• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 329
  • 89
  • 69
  • 60
  • 56
  • 45
  • 27
  • 23
  • 23
  • 18
  • 12
  • 10
  • 6
  • 5
  • 3
  • Tagged with
  • 834
  • 372
  • 208
  • 183
  • 121
  • 116
  • 82
  • 75
  • 73
  • 54
  • 54
  • 49
  • 47
  • 47
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

Záporné elektrodové materiály v lithium-iontovém akumulátoru / Compatibility of negative electrode materials at system of lithium-ion battery

Šikuda, Milan January 2015 (has links)
This thesis deals with a study of lithium-ion batteries. It is focused into negative electrode materials and electrolytes. In this thesis is presented synthesis, electrochemical properties, possibilities to improving negative electrode materials as LTO (Lithium Titanate Oxid) and graphite. These electrode materials were investigated with respect to their compatibility at electrolytes with carbonate solvents, Sulfolane and DMF (DiMethylFormamide) in detail. The main aim of this thesis is to characterize electrode materials and electrolyte properties depending on wide range of temperatures and their comparison for the purpose of achievement of the best solution. The thesis is divided into two main parts. The theoretical part of thesis describes composition, process of synthesis and analysis of lithium-ion cell. Practical part contains measuring and evaluating of charge-discharge and irreversible capacity characteristics related to variety of environmental temperatures.
282

Design elektrického sportovního automobilu / Design of electric sport car

Zdvyhal, Milan January 2010 (has links)
This diploma thesis deals with the actual problems of sports car. This project solves the basic question of the future ecological cars drive and deals with problems related to ergonomics adherent to this type of car. The work includes a detailed retrieval study of the issue followed by the procedure of designing the car. The conclusion of the thesis deals with the detailed description and an analysis of the concept from several points of view. This thesis is also supplemented by preview of po-sters and multimedia presentation for 3D virtual reality.
283

Elektrické vlastnosti modifikovaných iontových kapalin / The electrical properties of modified ionic liquids

Kulhavý, Miloslav January 2016 (has links)
This thesis deals with ionic liquids and use of ionic liquids as electrolytes in lithium-ion batteries. Thesis describes basic characteristics of secondary electrochemical cells and characteristics of ionic liquids. Thesis also describes modifications and measurement of ionic liquids. Thesis also presents the results of measurement conductivity and potential window of modified ionic liquids.
284

Beyond Activated Carbon: Graphite‐Cathode‐Derived Li‐Ion Pseudocapacitors with High Energy and High Power Densities

Wang, Gang, Oswald, Steffen, Löffler, Markus, Müllen, Klaus, Feng, Xinliang 17 July 2019 (has links)
Supercapacitors have aroused considerable attention due to their high power capability, which enables charge storage/output in minutes or even seconds. However, to achieve a high energy density in a supercapacitor has been a long‐standing challenge. Here, graphite is reported as a high‐energy alternative to the frequently used activated carbon (AC) cathode for supercapacitor application due to its unique Faradaic pseudocapacitive anion intercalation behavior. The graphite cathode manifests both higher gravimetric and volumetric energy density (498 Wh kg−1 and 431.2 Wh l−1) than an AC cathode (234 Wh kg−1 and 83.5 Wh l−1) with peak power densities of 43.6 kW kg−1 and 37.75 kW l−1. A new type of Li‐ion pseudocapacitor (LIpC) is thus proposed and demonstrated with graphite as cathode and prelithiated graphite or Li4Ti5O12 (LTO) as anode. The resultant graphite–graphite LIpCs deliver high energy densities of 167–233 Wh kg−1 at power densities of 0.22–21.0 kW kg−1 (based on active mass in both electrodes), much higher than 20–146 Wh kg−1 of AC‐derived Li‐ion capacitors and 23–67 Wh kg−1 of state‐of‐the‐art metal oxide pseudocapacitors. Excellent rate capability and cycling stability are further demonstrated for LTO‐graphite LIpCs.
285

Architectural Nanomembranes as Cathode Materials for Li-O2 Batteries

Lu, Xueyi 17 August 2017 (has links)
Li-O2 batteries have attracted world-wide research interest as an appealing candidate for future energy supplies because they possess the highest energy density of any battery technology. However, such system still face some challenges for the practical application. One of the key issues is exploring highly efficient cathode materials for Li-O2 batteries. Here, a rolled-up technology associated with other physical or chemical methods are applied to prepare architectural nanomembranes for the cathode materials in Li-O2 batteries. The strain-release technology has recently proven to be an efficient approach on the micro/nanoscale to fabricate composite nanomembranes with controlled thickness, versatile chemical composition and stacking sequence. This dissertation first focuses on the synthesis of trilayered Pd/MnOx/Pd nanomembranes. The incorporation of active Pd layers on both sides of the poor conductive MnOx layer commonly used in energy storage systems greatly enhances the conductivity and catalytic activity. Encouraged by this design, Pd nanoparticles functionalized MnOx-GeOy nanomembranes are also fabricated, which not only improve the conductivity but also facilitate the transport of Li+ and oxygen-containing species, thus greatly enhancing the performance of Li-O2 batteries. Similarly, Au and Pd arrays decorated MnOx nanomembranes act as bifunctional catalysts for both oxygen reduction reaction and oxygen evolution reaction in Li-O2 batteries. Moreover, by introducing hierarchical pores on the nanomembranes, the performance of Li-O2 batteries is further promoted by porous Pd/NiO nanomembranes. The macropores created by standard photolithography facilitate the rolling process and the nanopores in the nanomembranes induced by a novel template-free method supply fast channels for the reactants diffusion. In addition, a facile thermal treatment method is developed to fabricate Ag/NiO-Fe2O3/Ag hybrid nanomembranes as carbon-free cathode materials in Li-O2 batteries. A competing scheme between the intrinsic strain built in the oxide nanomembranes and an external driving force provided by the metal nanoparticles is introduced to tune the morphology of the 3D tubular architectures which greatly improve the performance by providing continuous tunnels for O2 and electrolyte diffusion and mitigating the side reactions produced by carbonaceous materials.
286

Olivin-Typ Lithiumeisenphosphat (Li1-xFePO4) - Synthese, Li-Ionentransport und Thermodynamik

Loos, Stefan 05 February 2015 (has links)
Die vorliegende Dissertation beschäftigt sich mit der Synthese, den Li+-Transporteigenschaften und der Thermodynamik von Olivin-Typ LiFePO4. Es werden verschiedene Solvothermalsynthesen untersucht. Neben der Einstellung von Partikelgröße und Partikelmorphologie steht die Analyse der Hydrothermalsynthese aus Li3PO4 und Vivianit durch in situ Messung der elektrolytischen Leitfähigkeit im Vordergrund. Die Untersuchung des Li+-Transportes geschieht auf Basis von Redoxreaktionen. Die formalkinetische Auswertung von Lithiierungs- und Delithiierungsreaktionen und eine Nukleationsanalyse wird durch ein Modell zur Auswirkung von antisite-Defekten auf die Kapazität des Elektrodenmaterials ergänzt. Die Ramanspektroskopie wird in Verbindung mit Lösungsenthalpien zur Identifizierung reaktiver Spezies herangezogen. Schwerpunkt der thermodynamischen Charakterisierung ist die experimentelle Ermittlung der Wärmekapazität. Diese wurde unter Berücksichtigung einer magnetischen Phasenumwandlung im Bereich von 2 K bis 773 K ermittelt. Die Daten erlauben die Berechnung wichtiger thermodynamischer Funktionen.
287

Caractérisation électrochimique de microbatteries Li-Free / Electrochemical Characterization of Li-Free Microbatteries

Ferreira Gomes, Franck 10 October 2018 (has links)
Pour répondre aux besoins de la miniaturisation des systèmes électroniques nomades, le monde du stockage de l’énergie a dû se réinventer et proposer des solutions innovantes permettant de répondre à ces problématiques. Parmi ces solutions, les microbatteries tout-solide « lithium-free » offrent de nombreux avantages (intégration facilité, aspect sécuritaire), malgré une cyclabilité encore limitée. L’objectif de cette thèse consiste à étudier ces microbatteries LiCoO2/LiPON/Cu, notamment par caractérisation électrochimique, pour en comprendre les mécanismes et proposer des solutions permettant d’en améliorer les performances. L’étude des couches unitaires de ce système a permis d’identifier les propriétés principales de chaque film mince et de connaitre la composition chimique et structurale de ces couches. Puis, la mise en place d’un protocole de charge servant à améliorer considérablement la tenue en cyclage a été décryptée à l’aide de la spectroscopie d’impédance électrochimique et de l’XPS. Ce travail a permis la compréhension fine des mécanismes physico-chimiques présent à chaque étape et de décrire un scénario quant au fonctionnement de ce protocole. Par ailleurs, la compréhension de ces phénomènes a été utile pour proposer des solutions permettant d’augmenter encore la tenue en cyclage des microbatteries Li-Free, pour que celle-ci puisse atteindre une capacité initiale et une cyclabilité équivalente aux microbatteries au lithium métallique, utilisé conventionnellement en microélectronique. / To meet the needs of the miniaturization of mobile electronic systems, the world of energy storage has had to reinvent itself and propose innovative solutions to meet these problems. Among these solutions, all-solid "lithium-free" microbatteries offer many advantages (easy integration, safety aspect), despite their still limited cyclability. The objective of this thesis is to study these LiCoO2/LiPON/Cu microbatteries, in particular by electrochemical characterization, in order to understand their mechanisms and propose solutions to improve their performances. The study of the unit layers of this system made it possible to identify the main properties of each thin film and to know the chemical and structural composition of these layers. Then, the implementation of a charging protocol to significantly improve cycling performance was decoded using electrochemical impedance spectroscopy and XPS. This work allowed the detailed understanding of the physico-chemical mechanisms present at each stage and to describe a scenario as for the operation of this protocol. In addition, understanding these phenomena has been useful in proposing solutions to further increase the cycling resistance of Li-Free microbatteries, so that it can reach an initial capacity and cyclability equivalent to lithium metal microbatteries, used conventionally in microelectronics
288

Investigation Into the Localized Corrosion of Aluminum-Copper-Lithium Alloy 2099

Hanna, Benjamin January 2018 (has links)
No description available.
289

Hollow MoSx nanomaterials for aqueous energy storage applications

Quan, Ting 31 May 2021 (has links)
Die vorliegende Arbeit konzentriert sich auf die Synthese von neuartigen hohlen MoSx-Nanomaterialien mit kontrollierbarer Größe und Form durch die kolloidale Template Methode. Ihre möglichen Anwendungen in wässrigen Energiespeichersystemen, einschließlich Superkondensatoren und Li-Ionen-Batterien (LIBs), wurden untersucht. Im ersten Teil wurde eine neue Nanostruktur aus hohlen Kohlenstoff-MoS2-Kohlenstoff-nanoplättchen erfolgreich durch eine L-Cystein unterstützte hydrothermale Methode unter Verwendung von Gibbsit als Templat und Polydopamin (PDA) als Kohlenstoffvorläufer synthetisiert. Nach dem Kalzinieren und Ätzen des Gibbsit Templates wurden gleichförmige Hohlplättchen erhalten, die aus einer sandwichartigen Anordnung von teilweise graphitischem Kohlenstoff und zweidimensional geschichteten MoS2 Flocken bestehen. Die Plättchen haben eine ausgezeichnete Dispergierbarkeit und Stabilität in Wasser sowie eine gute elektrische Leitfähigkeit aufgrund des durch die Kalzinierung von Polydopaminbeschichtungen erzeugten Kohlenstoffs gezeigt. Das Material wird dann in einem symmetrischen Superkondensator mit 1 M Li2SO4 als Elektrolyt aufgebracht, der eine spezifische Kapazität von 248 F/g (0.12 F/cm2) bei einer konstanten Stromdichte von 0.1 A/g und eine ausgezeichnete elektrochemische Stabilität über 3000 Zyklen aufweist, was darauf hindeutet, dass hohle Kohlenstoff-MoS2-Kohlenstoffnanoplättchen vielversprechende Materialien als Kandidaten für Superkondensatoren sind. Im zweiten Teil wurde 21 molare LiTFSI, das sogenannte "Wasser-in-Salz" (WIS) Elektrolyt, in Superkondensatoren mit hohlen Kohlenstoffnanoplättchen als Elektrodenmaterial untersucht. Im Vergleich zu dem im ersten Teil verwendeten 1 molaren Li2SO4-Elektrolyten wurden bei dem vorliegenden WIS Elektrolyt signifikante Verbesserungen in einem breiteren und stabilen Potentialfenster festgestellt, das durch die geringere Leitfähigkeit mit dem Gegenstück leicht beeinflusst wird. Die elektrochemische Impedanzspektroskopie (EIS) wurde ausgiebig eingesetzt, um einen Einblick in die Reaktionsmechanismen der WIS-Superkondensatoren zu erhalten. Zusätzlich wurde auch der Einfluss der Temperatur auf die elektrochemische Leistung im Temperaturbereich zwischen 15 und 55 °C untersucht, was eine hervorragende spezifische Kapazität von 128 F/g bei dem optimierten Zustand von 55 °C ergab. Die EIS-Messungen deckten die Abnahme der angepassten Widerstände mit der Temperaturerhöhung und umgekehrt auf und beleuchteten direkt die Beziehung zwischen elektrochemischer Leistung und Arbeitstemperatur von Superkondensatoren für zuverlässige praktische Anwendungen. Im dritten Teil wurde MoS3, ein amorphes, kettenförmig strukturiertes Übergangsmetall Trichalcogenid, als vielversprechende Anode in "Wasser-in-Salz" Li-Ionen-Batterien (WIS-LIBs) nachgewiesen. Die in diesem Teil verwendeten hohlen MoS3-Nanosphären wurden mittels einer skalierbaren Säurefällungsmethode bei Raumtemperatur synthetisiert, wobei sphärische Polyelektrolytbürsten (SPB) als Schablonen verwendet wurden. Beim Einsatz in WIS-LIBs mit LiMn2O4 als Kathodenmaterial erreicht das präparierte MoS3 eine hohe spezifische Kapazität von 127 mAh/g bei einer Stromdichte von 0.1 A/g und eine gute Stabilität über 1000 Zyklen sowohl in Knopf- als auch in Pouch-Zellen. Der Arbeitsmechanismus von MoS3 in WIS-LIBs wurde auch durch Ex-situ-Röntgenbeugungsmessungen (XRD) untersucht. Während des Betriebs wird MoS3 während der anfänglichen Li-Ionen-Aufnahme irreversibel in Li2MoO4 umgewandelt und dann allmählich in eine stabilere und reversible LixMoOy-Phase (2≤y≤4)) entlang der Zyklen umgewandelt. Amorphes Li-defizientes Lix-mMoOy/MoOz wird bei der Delithiierung gebildet. Die Ergebnisse der vorliegenden Studie zeigen einfache Ansätze zur Synthese hohler MoSx-Nanomaterialien mit kontrollierbarer Morphologie unter Verwendung einer Template-basierten Methode, die auf die vielversprechende Leistung von MoSx für wässrige Energiespeicheranwendungen zurückzuführen sind. Die elektrochemischen Untersuchungen von hohlen MoSx-Nanomaterialien in wässrigen Elektrolyten geben Einblick in die Reaktionsmechanismen von wässrigen Energiespeichersystemen und treiben die Entwicklung von Metallsulfiden für wässrige Energiespeicheranwendungen voran. / The present thesis focuses on the synthesis of novel hollow MoSx nanomaterials with controllable size and shape through the colloidal template method. Their possible applications in aqueous energy storage systems, including supercapacitors and Li-ion batteries (LIBs), have been studied. In the first part, hollow carbon-MoS2-carbon nanoplates have been successfully synthesized through an L-cysteine-assisted hydrothermal method by using gibbsite as the template and polydopamine (PDA) as the carbon precursor. After calcination and etching of the gibbsite template, uniform hollow platelets, which are made of a sandwich-like assembly of partial graphitic carbon and two-dimensional layered MoS2 flakes, have been obtained. The platelets have shown excellent dispersibility and stability in water, and good electrical conductivity due to carbon coating generated by the calcination of polydopamine. The material is then applied in a symmetric supercapacitor using 1 M Li2SO4 as the electrolyte, which exhibits a specific capacitance of 248 F/g (0.12 F/cm2) at a constant current density of 0.1 A/g and an excellent electrochemical stability over 3000 cycles, suggesting that hollow carbon-MoS2-carbon nanoplates are promising candidate materials for supercapacitors. In the second part, 21 m LiTFSI, so-called “water-in-salt” (WIS) electrolyte, has been studied in supercapacitors with hollow carbon nanoplates as electrode materials. In comparison with 1 M Li2SO4 electrolyte used in the first part, significant improvements on a broader and stable potential window have been revealed in the present WISE, which is slightly influenced by the lower conductivity with the counterpart. The electrochemical impedance spectroscopy (EIS) has been extensively employed to provide an insight look on the formation of solid electrolyte interphase in the WIS-supercapacitors. Additionally, the effect of temperature on the electrochemical performance has also been investigated in the temperature range between 15 and 55 °C, yielding eminent specific capacitance of 128 F/g at the optimized condition of 55 °C. The EIS measurements disclosed the decrease of fitted resistances with the increase of temperature and vise versa, directly illuminating the relationship between electrochemical output and working temperature of supercapacitors for reliable practical applications. In the third part, MoS3, an amorphous chain-like structured transitional metal trichalcogenide, has been demonstrated as a promising anode in the “water-in-salt” Li-ion batteries (WIS-LIBs). Hollow MoS3 nanospheres used in this part have been synthesized via a scalable room-temperature acid precipitation method using spherical polyelectrolyte brushes (SPB) as the template. When applied in WIS-LIBs with LiMn2O4 as the cathode material, the prepared MoS3 achieves a high specific capacity of 127 mAh/g at the current density of 0.1 A/g and good stability over 1000 cycles in both coin cells and pouch cells. The working mechanism of MoS3 in WIS-LIBs has also been studied by ex-situ X-ray diffraction (XRD) measurements. During operation, MoS3 undergoes irreversible conversion to Li2MoO4 during the initial Li ion uptake, and is then gradually converted to a more stable and reversible LixMoOy (2≤y≤4)) phase along cycling. Amorphous Li-deficient Lix-mMoOy/MoOz is formed upon delithiation. The results in the present thesis demonstrate facile approaches for synthesizing hollow MoSx nanomaterials with controllable morphologies using a template-based method, which attribute to the promising performance of MoSx for aqueous energy storage applications. The electrochemical studies of hollow MoSx nanomaterials in aqueous electrolytes provide insight into the reaction mechanisms of aqueous energy storage systems and push forward the development of metal sulfides for aqueous energy storage applications.
290

Transmission X-ray Absorption Spectroscopy of the Solid Electrolyte Interphase on Silicon Anodes for Li-ion Batteries

Schellenberger, Martin 27 September 2022 (has links)
Die Röntgenabsorptionsspektroskopie (XAS) ist eine element-spezifische Charakterisierungs-methode, welche es erlaubt die elektronische und chemische Struktur der SEI zu untersuchen. In dieser Arbeit stelle ich ein neues Verfahren vor, das die Transmissions-XAS von Flüssigkeiten und Dünnschicht-Batterieelektroden unter in-situ Bedingungen mit weicher Röntgenstrahlung ermöglicht. Thematisch ist die Arbeit in zwei Teile gegliedert. Das neuartige Verfahren wird zunächst umfangreich vorgestellt und dann zur Untersuchung der Solid Electrolyte Interphase (SEI) auf Silizium angewendet. Das Verfahren basiert auf einer elektrochemischen Halbzelle, die mit einem Stapel aus zwei Siliziumnitrid-Membranfenster ausgestattet ist, um den Elektrolyten einzuschließen. Eines der Membranfenster ist gleichzeitig der Träger für die Dünnschicht-Siliziumanode, die Ladezyklen mit einer Kathode aus metallischem Lithium durchläuft. Nachdem sich die SEI gebildet hat, wird mittels eines Röntgenstrahls von hoher Intensität vorsätzlich eine Blase erzeugt, um überschüssigen Elektrolyten abzudrängen und einen dünnen Elektrolytfilm über der SEI zu stabilisieren. Durch den Elektrolytfilm bleibt die SEI in-situ. Das erzeugte System aus Blase, Elektrolytfilm, SEI und Siliziumanode wird dann mittels Transmissions-XAS untersucht. Im zweiten Teil meiner Arbeit werden dann Silizium Dünnschicht-Anoden mit dem vorgestellten Verfahren am Elektronenspeicherring BESSY II in Berlin untersucht. Bei der elektrochemischen Charakterisierung zeigen die Dünnschicht-anoden alle für die De-/Lithiierung von Silizium üblichen Merkmale. Als Hauptbestandteile der SEI wurden Lithiumacetat, Li Ethylendicarbonat oder -monocarbonat, Li Acetylacetonat, LiOH und LiF ermittelt. Darüber hinaus deuten Anzeichen von Aldehyden auf flüssige Einschlüsse in einer möglich-erweise porösen SEI Struktur hin. / X-ray Absorption Spectroscopy (XAS) is an element-specific technique, which allows to probe the electronic and chemical structure of the SEI. In this work, I introduce a novel approach for transmission XAS on liquids and thin-film battery electrode materials under in-situ conditions in the soft X-ray regime. Thematically, this work is divided into two parts: 1) the introduction of this novel method and 2) its application to investigate the Solid Electrolyte Interphase (SEI) on silicon thin film anodes. The presented technique is based on an electrochemical half-cell equipped with a sandwich of two silicon nitride membrane windows to encapsulate the electrolyte. One of the membranes acts as substrate for the silicon thin-film anode, which is cycled with a metallic lithium counter-electrode. After the SEI has formed, a gas bubble is intentionally introduced through radiolysis by a high intensity X-ray to push out excessive electrolyte and stabilize a thin electrolyte layer on top of the SEI, keeping it in-situ. The obtained stack comprised of bubble, electrolyte thin-layer, SEI and anode, is then probed with transmission XAS. The second part of this work utilizes the presented method to investigate the SEI on amorphous silicon anodes at the BESSY II synchrotron facility in Berlin. The anodes’ electrochemical characterization shows all significant features of silicon’s de-/lithiation. The SEI’s main components are determined as Li acetate, Li ethylene di-carbonate or Li ethylene mono-carbonate, Li acetylacetonate, LiOH, and LiF. Additionally, the evidence for aldehyde species indicates possible liquid inclusions within a presumably porous SEI morphology.

Page generated in 0.0444 seconds