1 |
A multiplexed microfluidic and microscopy study of vasodilation signaling pathways using microbubble and ultrasound therapyGoldgewicht, Joseph 03 1900 (has links)
Dans les tumeurs solides, l'hypoxie est un mécanisme de résistance à la radiothérapie bien connu. Il a déjà été démontré que, lorsque les microbulles (MB) sont exposées à une impulsion ultrasonore (US), celles-ci peuvent induire une vasodilatation dans les tissus musculaires. De plus, une impulsion thérapeutique peut être délivrée localement dans la tumeur en dirigeant le faisceau US. Cette approche est donc proposée comme thérapie provasculaire ciblée, guidée par l’imagerie ultrasonore dans les tumeurs afin de réduire l'hypoxie avant la radiothérapie.
Le contrôle de la vasodilatation est induit par la production d'oxyde nitrique (NO) par la voie de signalisation cellulaire du eNOS dans les cellules endothéliales. Il a été démontré que l'augmentation de l'ATP extracellulaire active la voie de signalisation du eNOS. Il a aussi été démontré que l’oscillation des MB sous l’effet des US libèrent de l'ATP lorsque le tissu musculaire est traité. Cependant, les effets des différentes conditions ultrasonores et de MB sur la libération d'ATP n'ont pas encore été étudiés. Nous émettons donc l'hypothèse qu'il existe des conditions permettant de maximiser l’activation des voies de signalisation purinergiques (ATP) et d'optimiser leur durée d’activation pour une réponse provasculaire optimale.
Les motivations de ce projet sont de tester divers paramètres et d'étudier les interactions MB/cellules dans des conditions d'écoulement, qui sont généralement difficile à mettre en place lorsqu'on utilise des boîtes de Pétri. Pour quantifier plus facilement les voies de signalisation, nous avons créé des puces microfluidiques avec quatre canaux parallèles dans lesquels des cellules ont pu être cultivées. Avec quatre canaux traités lors d’une même impulsion ultrasonore, nous avons aussi augmenté le nombre de données à traiter et nous pouvons observer les effets de plusieurs impulsions lorsque les MB étaient dans un écoulement. En outre, la puce que nous avons développé est capable de donner une concentration en MB différente dans chaque canal afin de pouvoir tester quatre concentrations de MB différente dans des conditions d’écoulement. Les objectifs de ce projet de maîtrise sont donc les suivants : (1) concevoir la puce microfluidique ; (2) être capable de cultiver des cellules dans les canaux microfluidiques ; (3) créer des protocoles pour mesurer la libération d'ATP et la viabilité cellulaire après une impulsion ultrasonore ; (4) observer la capacité de la puce à donner différentes concentrations de MB dans chaque canaux en conditions d’écoulement.
Lors de la conception de la puce microfluidique, nous avons créé un environnement dans lequel les quatre canaux de la puce ont des concentrations différentes de microbulles fluides. Ainsi, nous avons atteint les objectifs du projet. Nous avons réussi à introduire dans le canal microfluidique des cellules endothéliales de cordon ombilical humain (HUVEC) et une lignée cellulaire de cancer du sein (4T1). Les monocouches cellulaires créées par chacune des deux lignées cellulaires ont été traitées avec succès par une impulsion thérapeutique ultrasonore lors de l’injection de MB. Nos résultats montrent qu'une augmentation du nombre de cycles et de la pression, libère plus d'ATP et induisent une mortalité cellulaire plus importante. En outre, nous avons établi un lien entre la libération d'ATP et la mortalité cellulaire en comparant différentes impulsions thérapeutiques ultrasonore. Cette analyse a permis de dégager deux tendances. Avec des impulsions à faible énergie, la libération d'ATP est augmenté et on constate une très faible augmentation de la mort cellulaire ; inversement, avec des impulsions à plus forte énergie, la libération d'ATP et la mortalité cellulaire ont augmentés et on atteint un plateau. Ainsi, nos résultats confirment que différents mécanismes de libération d'ATP peuvent être déclenchés par les thérapies MB et US. / In solid tumors, hypoxia is a well-known resistance mechanism to radiation therapy. It was previously shown that microbubbles (MBs), when exposed to an ultrasound pulse (US) can cause vasodilation in muscle tissue. Conceptually, the therapeutic pulse can be localized on the tumor by steering the US beam. This approach is therefore proposed as a targeted image-guided provascular therapy in tumors to reduce hypoxia before radiotherapy. However, the effects of US and MB conditions on the relative increase in tumor perfusion remain largely unknown.
Vascular control is managed by the production of nitric oxide (NO) through the eNOS pathway inside the endothelial cells. Increases in extracellular ATP have been shown to be a signaling event for the activation of this pathway. Fittingly, MB and US have been shown to release ATP when muscle tissue was treated. However, the effects of therapeutic US and MB parameters on the treatment have not yet been described. We, therefore, hypothesize that there are conditions that will maximize the purinergic signaling pathways (ATP) and optimize their time course for an optimal provascular response.
The motivation for this project came from the desire to test various parameters and study MB/cell interactions in flowing conditions, which are typically limited when using petri dish setups. To quantify more easily the signaling pathways, we created microfluidic chips with four parallel cell coated channels. This chip allowed us to increase the throughput when using a single US exposure in static conditions and with the ability to support multiple US exposures with MB replenishment in flowing conditions. Also, the custom-made chip multiplexes the bubble concentration to obtain four channels with different flowing microbubble concentrations. The goals of this master’s project were thus: (1) to design the microfluidic chip; (2) to demonstrate the capacity for cell culture; (3) create protocols for measuring ATP and cell viability after therapeutic pulses; (4) to demonstrate repeatable flowing conditions with the multiplexed MB concentration.
On the design of the microfluidic chip, we were successful at creating an environment where four of the four channels in the chip have different concentrations of flowing microbubbles. Thus, fulfilling the project's goals. We have succeeded in seeding both Human Umbilical Vein Endothelial Cells (HUVECs) and a breast cancer cell line (4T1) into the microfluidic channel. The cell monolayers created by both cell lines were successfully treated with an US and MB therapeutic pulse. Our results support that an increase in both, cycles and pressure, release more ATP and cause more cell death. Further, we linked ATP release to cell death by comparing different therapeutic pulses. From this analysis, two trends appeared. With lower energy pulses, ATP release increased sharply with a very small increase in cell death; conversely, with higher energy pulses, ATP release continued to increase with cell death but reached a plateau. Thus, our results support that different mechanisms of ATP release can likely be triggered by MB and US therapy.
|
Page generated in 0.0759 seconds