• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 15
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Rozpoznání SPZ/RZ / LPR detection and OCR

Krajíček, Pavel January 2010 (has links)
The theme of this thesi’s deals with the detection and recognition of car license plate from pictures made of screening machine situated on a crassing or inside a car. The thesis si divided into two basic parts. First deals with searching for presence of licence plate in the picture. If the marque was found, we continue the second part of the program which identificates the found license plate. The first part of program aspires to find the licence plate by the edge detectors. The second part classifies characters by the method based on an analytical description.
12

Разработка системы видео-мониторинга парковочного пространства : магистерская диссертация / Evelopment of video monitoring system of parking space

Соловиченко, О. В., Solovichenko, O. V. January 2017 (has links)
В работе актуализируется проблема поиска свободного парковочного места на крупных парковках. Разработанная система видео-мониторинга парковочного пространства, являющаяся частью программного комплекса «Умная парковка», включает в себя два модуля: модуль распознавания номеров для идентификации приезжающих автомобилей, модуль распознавания графических меток для мониторинга парковочных мест. Работы по тестированию проводилась на макете автомобильной парковки с использованием радиоуправляемых моделей. / The problem of finding a free parking space in large parking lots is being updated. The developed video monitoring system for the parking space, which is part of the Smart Parking program, includes two modules. The module of number recognition serves for identification of visiting cars. The module of recognition of graphic marks serves for monitoring of parking places. Testing was carried out on a minimized parking model.
13

Rozpoznávání SPZ / LPR Recognition

Trkal, Ondřej January 2016 (has links)
The thesis deals with analysis and design of system for automatic localization and recognition of the license plate. The input images are from different sources, and contain large scenic and weather variations. The aim was to create a system able to find the licence plate on the image and recognize its alphanumeric figure. In this work, there is a focus on analysis and implementation of localization and optical character recognition methods. One own and four other localization methods are compared. There are also compared three classifiers for optical character recognition. Localization and OCR methods are tested on real data and evaluated in accordance with the calculated evaluation parameters. The work also contains sensitivity analysis of the proposed system.
14

Effektivisering av automatiserad igenkänning av registreringsskyltar med hjälp av artificiella neurala nätverk för användning inom smarta hem

Drottsgård, Alexander, Andreassen, Jens January 2019 (has links)
Konceptet automatiserad igenkänning och avläsning av registreringsskyltarhar utvecklats mycket de senaste åren och användningen av Artificiellaneurala nätverk har introducerats i liten skala med lovande resultat. Viundersökte möjligheten att använda detta i ett automatiserat system förgarageportar och implementerade en prototyp för testning. Den traditionellaprocessen för att läsa av en skylt kräver flera steg, i vissa fall upp till fem.Dessa steg ger alla en felmarginal som aggregerat kan leda till över 30% riskför ett misslyckat resultat. I denna uppsats adresseras detta problem och medhjälp av att använda oss utav Artificiella neurala nätverk utvecklades enkortare process med endast två steg för att läsa en skylt, (1) lokaliseraregistreringsskylten (2) läsa karaktärerna på registreringsskylten. Dettaminskar antalet steg till hälften av den traditionella processen samt minskarrisken för fel med 13%. Vi gjorde en Litteraturstudie för att identifiera detlämpligaste neurala nätverket för uppgiften att lokalisera registreringsskyltarmed vår miljös begränsningar samt möjligheter i åtanke. Detta ledde tillanvändandet av Faster R-CNN, en algoritm som använder ett antal artificiellaneurala nätverk. Vi har använt metoden Design och Creation för att skapa enproof of concept prototyp som använder vårt föreslagna tillvägagångssätt föratt bevisa att det är möjligt att implementera detta i en verklig miljö. / The concept of automated recognition and reading of license plates haveevolved a lot the last years and the use of Artificial neural networks have beenintroduced in a small scale with promising results. We looked into thepossibility of using this in an automated garage port system and weimplemented a prototype for testing. The traditional process for reading alicense plate requires multiple steps, sometimes up to five. These steps all givea margin of error which aggregated sometimes leads to over 30% risk forfailure. In this paper we addressed this issue and with the help of a Artificialneural network. We developed a process with only two steps for the entireprocess of reading a license plate, (1) localize license plate (2) read thecharacters on the plate. This reduced the number of steps to half of theprevious number and also reduced the risk for errors with 13%. We performeda Literature Review to find the best suited algorithm for the task oflocalization of the license plate in our specific environment. We found FasterR-CNN, a algorithm which uses multiple artificial neural networks. We usedthe method Design and Creation to implement a proof of concept prototypeusing our approach which proved that this is possible to do in a realenvironment.
15

Re-identifikace vozidla pomocí rozpoznání jeho registrační značky / Re-Identification of Vehicles by License Plate Recognition

Špaňhel, Jakub January 2015 (has links)
This thesis aims at proposing vehicle license plate detection and recognition algorithms, suitable for vehicle re-identification. Simple urban traffic analysis system is also proposed. Multiple stages of this system was developed and tested. Specifically - vehicle detection, license plate detection and recognition. Vehicle detection is based on background substraction method, which results in an average hit rate of ~92%. License plate detection is done by cascade classifiers and achieves an average hit rate of 81.92% and precision rate of 94.42%. License plate recognition based on Template matching results in an average precission rate of 60.55%. Therefore the new license plate recognition method based on license plate scanning using the sliding window principle and neural network recognition was introduced. Neural network achieves a precision rate of 64.47% for five input features. Low precision rate of neural network is caused by small amount of training sample for some specific license plate characters.

Page generated in 0.1247 seconds