31 |
Nanoscale electrical characterisation of nitride structuresChoi, Fung Sing January 2018 (has links)
To fully exploit the potential of gallium nitride (GaN) devices for optoelectronics and power electronic applications, the structures of device need to be investigated and optimized. In particular carrier densities, conductivities and localised charges can have a significant impact to device performances. Electrical scanning probe microscopy techniques, including scanning capacitance microscopy (SCM), conductive atomic force microscopy (C-AFM) and kelvin probe force microscopy (KPFM), were utilized to study the structures of nitride devices such as high electron mobility transistors (HEMTs), light emitting diodes (LEDs) and junction diodes. These results combine with other characterisation techniques to give an enhanced understanding about the nitride structures. Leakage currents are one of the major challenges in HEMTs, especially leakages in buffer layers which deteriorate the breakdown voltage of the devices. To achieve an insulating buffer layer, carbon doping is usually used to compensate the unintentional n-type doping of nitride materials. Here, I show that vertical leakage can originate from the formation of inverted hexagonal pyramidal defects during the low temperature growth of an AlGaN:C strain relief layer. The semi-polar facets of the defects enhanced the oxygen incorporation and led to the formation of leakage pathways which were observed using SCM. Leakage occurring at HEMT surfaces will lead to current collapses of devices. In this work, I discovered nano-cracks on a HEMT surface. C-AFM showed enhanced conductivity along these nano-cracks. A model based on stress relaxation analysis was proposed to explain the drop of surface potential along the nano-cracks. Advances in the quality of epitaxial GaN grown by MOVPE have been facilitated by understanding the formation of defects within the materials and structures. However, hillocks as a specific type of defects have not been intensively studied yet. In this work, three types of hillocks were discovered on GaN p-i-n diodes and a GaN film grown on patterned sapphire substrates. It was found that pits were always present around the centres of hillocks. Multi-microscopy results showed these pits were developed from either an inversion domain or a nano-pipe or a void under the sample surface. Formation of hillocks was usually associated with a change of growth condition, such as an increase in Mg doping or a decrease in growth temperature and gas flows, despite the formation mechanism is still unclear. GaN$_{1-x}$As$_x$ is a highly mismatched alloy semiconductor whose band-gap can be engineered across the whole visible spectrum. For this reason and the potential to achieve high p-type doping, GaN$_{1-x}$As$_x$ is a promising material for optoelectronic applications. However, the growth of GaN$_{1-x}$As$_{x}$ at intermediate As fraction while maintaining a high conductivity and uniformity of the material is still challenging. Two n-GaN/p-GaN$_{1-x}$As$_x$ diodes with different Ga flows were investigated. Both samples demonstrated that highly Mg-doped GaN$_{1-x}$As$_x$ with high As fraction is achievable. However, the samples contained both amorphous and polycrystalline regions. The electrical scanning probe microscopy results suggested the amorphous structure has a lower hole concentration and hence conductivity than the polycrystalline structure. Nevertheless, there is still a lack of understanding about the electrical properties and conduction mechanisms of the GaN$_{1-x}$As$_x$ alloy.
|
32 |
Type-II InAs/GaSb superlattice LEDs: applications for infrared scene projector systemsNorton, Dennis Thomas, Jr. 01 December 2013 (has links)
Optoelectronic devices operating in the mid-wave (3-5 Μm) and long-wave (8-12 Μm) infrared (IR) regions of the electromagnetic spectrum are of a great interest for academic and industrial applications. Due to the lack of atmospheric absorption, devices operating within these spectral bands are particularly useful for spectroscopy, imaging, and dynamic scene projection. Advanced IR imaging systems have created an intense need for laboratory-based infrared scene projector (IRSP) systems which can be used for accurate simulation of real-world phenomena occurring in the IR. These IRSP systems allow for reliable, reproducible, safe, and cost-effective calibration of IR detector arrays. The current state-of-the-art technology utilized for the emitter source of IRSP systems is thermal pixel arrays (TPAs) which are based on thin film resistor technology. Thermal pixel array technology has fundamental limitations related to response time and maximum simulated apparent temperature, making them unsuitable for emulation of very hot (> 700 K) and rapidly evolving scenes.
Additionally, there exists a need for dual wavelength emitter arrays for IRSP systems dedicated to calibration of dual wavelength detector arrays. This need is currently met by combining the spectral output from two separate IRSP systems. This configuration requires precise alignment of the output from both systems and results in the maximum radiance being limited to approximately half that of the capability of a given emitter array due to the optics used to combine the outputs.
The high switching speed inherent to IR light-emitting diodes (LEDs) and the potential for high power output makes them an appealing candidate to replace the thermal pixel arrays used for IRSP systems. To this end, research has been carried out to develop and improve the device performance of IR LEDs based on InAs/GaSb type-II superlattices (T2SLs). A common method employed to achieve high brightness from LEDs is to incorporate multiple active regions, coupled by tunnel junctions. Tunnel junctions must provide adequate barriers to prevent carrier leakage, while at the same time remain low in tunneling resistance to prevent unwanted heating. The performance of two tunnel junction designs are compared in otherwise identical four stage InAs/GaSb superlattice LED (SLED) devices for application in IRSP systems.
This research culminated in the development of a 48 Μm pitch, 512$times512 individually addressable mid-wave IR LED array based on a sixteen stage, InAs/GaSb T2SL device design. This array was hybridized to a read-in integrated circuit and exhibited a pixel yield greater than 95 %. Projections based on single element emitter results predict this array will be able to achieve a peak apparent temperature of 1350 K within the entire 3-5 Μm band. These results demonstrate the feasibility of emitter arrays intended for IRSP systems based on InAs/GaSb SLED devices.
Additionally, a dual wavelength 48 Μm pitch, 8x8 emitter array based on InAs/GaSb T2SL LEDs was developed and demonstrated. This design incorporates two separate, 16 stage InAs/GaSb SL active regions with varying InAs layer thicknesses built into a single vertical heterostructure. The device architecture is a three terminal device allowing for independent control of the intensity of each emission region. Each emitter region creates a contiguous pixel, capable of being planarized and mated to drive electronics.
|
33 |
Investigation on Operating Characteristics of RGB LEDsLiao, Chi-nan 08 August 2007 (has links)
This thesis seeks to gain a better understanding on operating characteristics of the three primary color light emitting diode (LED). By applying direct, pulse and sinusoidal currents with dimming function on red, green, and blue LEDs, respectively, the operating characteristics are investigated, including electrical characteristics and their effects on the light efficiency, spectral power distribution, chromaticity on each color LED and the resultant color gamut.
The analysis reveals that the illumination characteristics intimately relate to the driving current. LEDs that are driven by pulse currents with pulse-width-modulation (PWM) dimming have less color shift than those driven by direct and sinusoidal currents with amplitude modulation dimming. However, the problematic color shifting is not acceptable when LEDs with pulse current are dimmed at a lower level. Based on the investigation results, a dimming scheme with PWM and pulse- amplitude-modulation (PAM) is proposed to correct the chromaticity and hence to improve the color gamut.
|
34 |
An RGB-LED Back-Light Driving CircuitWu, Zong-hua 08 August 2007 (has links)
This thesis proposes a novel driving circuit of the RGB light emitting diodes (LEDs) for the back-light source of the liquid crystal display. In stead of employing three dc-to-dc converters, a fly-back converter with three secondary windings is used to drive RGB-LED light bars. By adjusting the duty-ratio, the fly-back converter provides compromised voltages to RGB-LEDs in accordance with the operating modes of dimming control, so as to retain current magnitudes within the acceptable values. LEDs of three colors are dimmed by regulating the duty-ratios of three active power switches individually. By changing the ratio of the average currents of the three primary color LEDs, the color temperature range of driving can reach the requests of dimming control. As compared with a consumer product using the conventional driving circuit, the proposed circuit is obviously much simpler with less components and a higher efficiency.
|
35 |
Study on the Conduction Mechanism of Organic Light-Emitting Diode Using One-Dimensional Discontinuous ModelMIZUTANI, Teruyoshi, MORI, Tatsuo, KANEKO, Kazue, CHO, Don-Chan, OGAWA, Takuya 01 June 2002 (has links)
No description available.
|
36 |
Red EL Properties of OLED Having Hole Blocking LayerLEE, Duck-Chool, MIZUTANI, Teruyoshi, MORI, Tatsuo, KIM, Hyeong-Gweon 20 July 2000 (has links)
No description available.
|
37 |
Electroluminescence of Layer Thickness, Carbon Nano-particle Dopants, and Percolation Threshold Electric Conductivity of Fully Conjugated Rigid-rod PolymerChang, Chih-hao 02 July 2010 (has links)
Polymer light emitting diodes (PLED) were using a heterocyclic aromatic rigid-rod polymer poly-p-phenylene-benzobisoxazole (PBO) as an opto-electronically active layer; and poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonic acid) (PEDOT:PSS) as a hole transporting layer. Aluminum (Al) and indium tin oxide (ITO) were served as device cathode and anode, respectively. [6,6]-phenyl C61-butyric acid methyl ester (PC61BM) or derivatized multi-wall carbon nano-tube (MWCNT-C18), with great electron transporting ability, was doped into PBO to enhance the performance of PLED devices as well as the thin-film electrical conductivity.
The optical length was changed by using different spin coating speeds and durations. From the research, the £fmax of electroluminescence (EL) was blue-shifted as PEDOT:PSS spin coating speed increased for a thinner layer. Once using a higher spin coating speed repeatedly to coat PEDOT:PSS, the £fmax of electroluminescence was red-shifted. If the PEDOT:PSS film thicknesses were similar, the EL spectra were almost the same, independent of device processing scheme.
The injection current and EL intensity were enhanced by doping PC61BM or MWCNT- C18. The electric conductivity parallel to film surface (£m¡ü) was increased as the doping concentration increased. Because of the extremely different aspect ratio, the MWCNT-C18 had a lower percolation threshold concentration. Therefore, at a low MWCNT-C18 doping concentration, the injection current and the EL intensity were enhanced compared with those of PC61BM.
|
38 |
Efficient Driver for Dimmable White LED LightingYang, Wen-ching 25 July 2011 (has links)
A high efficiency driver circuit is proposed for Light Emitting Diode (LED) lamps with dimming feature. The current regulation is accomplished by processing partial power of the power conversion circuit so that a high overall efficiency can be realized. The detailed description and analysis of circuit operation are provided. The dimming feature can be accomplished by means of linear current regulation, pulse-width modulation (PWM) or double pulse-width modulation (DPWM).
Based on the circuit analyses and derived equations, a laboratory circuit is designed for an LED lamp which is composed of 40 high-brightness white LEDs in series. The performances with three dimming schemes are compared from the measured results. LEDs dimmed by DPWM have less color shift than those dimmed by linear current regulation and PWM. On the other hand, the dimming scheme with linear current regulation has the highest light efficiency over the entire dimming range. The circuit efficiency can be as high as 95.5% at the rated output and deteriorates slightly to 90.5% as the lamp is dimmed to 10% of the rated power.
|
39 |
A projective LED dental lamp designChung, Yu-Lin 17 August 2011 (has links)
Halogen lamps are mostly applied as a light source to the traditional lamp for medical treatment due to its proper color temperature, but it has its disadvantages such as ultraviolet rays and infrared rays which will be harmful to the patients and faculties in the hospitals under long-term exposure. Consequently, using light emitting diode(LED) as a new light source instead of the traditional halogen lamp will be the trend of the future. The purpose of this study is to design a projective LED dental lamp that can achieve the goals of 200mm¡Ñ100mm for light shape and 11000lux illuminance energy by using the optics simulation software, LightTools. Firstly, a single LED lamp module with a high focusing hollow tubular light guide structure was designed and developed comparing with the solid light guide structure used in many commercial projective dental lamp, the hollow tubular light guide structure can decrease illuminance energy lose due to the absorption by tube material. Because the required objective light shape could not be achieved by using the designed light guide structure only, so a lens component was adopted and designed in order to shrink the output light shape to the required size. Finally, through the specific arrangement of position and angle of each LED lamp module, a projective LED dental lamp with 9 LEDs lamp modules which conform with the required illuminance energy was proposed.
|
40 |
Implementation of Double Pulse Width Modulation for Uniformity of LED Light Bars in LCD Back-LightHuang, Chao-Hsuan 25 August 2011 (has links)
This thesis proposes a dimming approach with Double Pulse Width Modulation for equalizing the light output of the back light with light emitted diodes (LEDs) for large scale outdoor liquid crystal displays (LCDs). The approach compensates the difference among the LED light bars by adjusting the power outputs of converters according to the feedback of light strength from light sensors. With the proposed Double Pulse Width Modulation method, local brightness adjustment on the light bars can be made to provide a uniform light output and the dimming function for LCD can be retained. Experiments results made on a 46¡¨ LCD with four LED light bars demonstrate that the double pulse-width- modulation can provide uniformly in the light bar output. The experimental results show the proposed Double Pulse Width Modulation (DPWM) method can alleviate the problem from divergence of the light bars and thus can generate more uniform light output on LCDs.
|
Page generated in 0.0762 seconds