1 |
Design and Fabrication of Light-Emitting Electrochemical Cells / Design och tillverkning av ljusemitterande elektrokemiska cellerSandström, Andreas January 2013 (has links)
Glödlampan, en gång symbolen för mänsklig uppfinningsförmåga, är idag på väg att försvinna. Lysdioder och lågenergilampor har istället tagit över då dessa har betydligt längre livstid och högre effektivitet. Den tidigare så hyllade glödlampan anses numera vara en miljöbov, och förbud och restriktioner mot den blir allt vanligare. Trots detta så är de nya alternativen bara att betrakta som provisoriska steg på vägen mot en ideal ljuskälla, som idag tyvärr inte existerar. Lågenergilampor innehåller exempelvis kvicksilver, och utgör därmed ett direkt hot mot en användares hälsa. Både lysdioder och lågenergilampor består även av höga halter av andra tungmetaller, och är väldigt komplicerade att tillverka. Återvinning är därför ett måste, och en fullödig energibesparingsanalys måste ta hänsyn till den betydande energin som går åt vid tillverkningen. Till viss del kan detta lösas genom att göra komponenterna små och ljusstarka, men för att göra en sådan belysning angenäm används istället utrymmeskrävande och ofta energislukande lampskärmar. Lysdioder och lågenergilampor är helt enkelt bra, men långt ifrån perfekta.All elektronisk utrustning är idag beroende av metaller och inorganiska halvledare, vilket gör återvinning viktig och tillverkning komplicerad. Detta är kanske på väg att ändras då även organiska material, t.ex. plast, har visat sig kunna ha elektroniska egenskaper. Idag är organisk elektronik ett hett forskningsområde där material med liknande egenskaper som plast, fast med funktionella elektroniska egenskaper, undersöks och appliceras. Något som gör organiska material extra intressanta är att många kan lösas upp i vätskor, vilket möjliggör för skapandet av bläck. Detta leder i sin tur till möjligheter för användandet av storskaliga trycktekniker, t.ex. tidningspressar och bläckstråleskrivare, vilka leder till en stor kostnadsreduktion och förenklad tillverkning av lysande komponenter. Idag har plast redan ersatt många andra material i en mängd olika tillämpningar. Plastflaskor är vanligare än glasflaskor, och ylletröjor konkurerar idag med kläder gjorda av fleece och andra syntetiska fibrer. Med ljusemitterande plast finns det helt klart en möjlighet att en liknande utveckling kan ske även för lampor.Den här avhandlingen fokuserar på den fortsatta utvecklingen av den ljusemitterande elektrokemiska cellen (LEC), som 1995 uppfanns av Pei et al. LEC-tekniken använder sig av organiska halvledare för att konvertera elektrisk ström till ljus, men även en elektrolyt som möjliggör elektrokemisk dopning. Detta förbättrar den organiska halvledarens elektroniska egenskaper signifikant, vilket leder till mindre resistans och högre effektivitet hos den färdiga lysande komponenten.Visionen för denna och besläktade tekniker har sedan länge varit förverkligandet av en lysande tapet. Den här avhandlingen har försökt närma sig denna vision genom att visa hur en LEC kan uppnå hög effektivitet och lång livslängd, och samtidigt tillverkas i luft med storskaliga produktionsmetoder. Orsaker till en tidigare begränsad livslängd har identifierats och minimerats med hjälp av nya komponentstrukturer och materialformuleringar. En inkapslingsmetod presenteras också, vilken skyddar komponenten från syre och vatten som annars lätt reagerar med det dopade organiska materialet. Detta resulterar i en signifikant förbättring av livslängden.Genom att använda slot-die bestrykning och sprayning, båda kompatibla med rulle-till-rulle tillverkning, har möjligheter för storskalig produktion demonstrerats. Slutligen har en speciell metod för spraymålning av stora lysande ytor utvecklats. / The incandescent light bulb, once the very symbol for human ingenuity, is now being replaced by the next generation of lighting technologies such as the compact fluorescent lamp (CFL) and the light emitting diode (LED). The higher efficiencies and longer operational lifetimes of these new sources of illumination have led to the demise of the classic traditional bulb. However, it should be pointed out that the light sources that are taking over are better, but not perfect. The complex high-voltage electronic circuits and health hazardous materials required for their operation make them far from a sustainable eco-friendly option. Their fabrication is also complex, making the final product expensive. A new path forward might be through the use of plastics or other organic materials. Though not traditionally seen as electronically active, some organic materials do behave like inorganic semiconductors and substantial conductivity can be achieved by doping. Since plastics can be easily molded into complex shapes, or made into an ink using a solvent, it is expected that organic materials could revolutionize how we fabricate electronic devices in the future, and possibly replace inorganic crystals in the same way as plastics have replaced glass and wool for food storage and clothes. This thesis has focused on the light-emitting electrochemical cell (LEC), which was invented by Pei et al. in 1995. It employs organic semiconductors that can convert electricity to light, but also an electrolyte that further enhances the electronic properties of the semiconductor by allowing it to be electrochemically doped. This allows light-emitting films to be driven by a low-voltage source at a high efficiency. Unfortunately, the electrolyte has been shown to facilitate rapid degradation of the device under operation, which has historically severely limited the operational lifetime. Realizing the predicted high efficiency has also proven difficult. The purpose of this thesis is to bridge the gap between the LEC and the CFL. This is done by demonstrating efficient devices and improved operational lifetimes. Possible degradation mechanisms are identified and minimized using novel device architectures and optimized active layer compositions. An encapsulation method is presented, and shown to increase the LEC stability significantly by protecting it from ambient oxygen and water. The thesis further focuses on up-scaled fabrication under ambient air conditions, proving that light-emitting devices are compatible with solution-based and cost-efficient printing. This is achieved by a roll-to-roll compatible slot-die coating and a novel spray-depositing technique that alleviates problems stemming from dust particles and phase separation. A practical ambient air fabrication and a subsequent operation of light-emitting electrochemical cells with high efficiency are thus shown possible.
|
2 |
Electro-optical Emission of Heterocyclic Aromatic Rigid-rod Polymers Containing Sulfonated PendantsHan, Shen-Rong 24 July 2004 (has links)
In this research, we investigated a novel rigid-rod polymer sPBI for mono-layer polymer light emitting diode (PLED) fabrication and luminescence emission. sPBI could be a luminescent polymer with a low threshold voltage of 4.5 V and green light electroluminescence emission (530 nm). Its SO3H pendant attached to the p-phenyl ring improved electronic delocalization along the backbone resulted in a red shift of the absorption spectrum. By attaching propanesulfonated pendants to the heterocyclic moiety of intractable fully conjugated sPBI, water-soluble rigid-rod polyelectrolyte sPBI-PS(Li+) was synthesized to promote its processibility in water or common organic solvent. This water-soluble rigid-rod polyelectrolyte sPBI-PS(Li+) was fabricated for polymer light-emitting electrochemical cells (PLECs) with LiCF3SO3 (LiTf) or LiN(CF3SO2)2 (LiTfSI) dopants for investigating the influence of propanesulfonated pendants as well as dopants on the opto-electronic emission and the room-temperature DC conductivity. The effect of lithium salts (LiTf or LiTfSI) on photoluminescence color of doped sPBI-PS(Li+) films was negligible. sPBI-PS(Li+) PLECs doped with 0.41 and 1.01 wt. % of LiTfSI showed higher green light electroluminescence emission (514 nm) with a lower threshold voltage of 3.0 V and -4.6 V, respectively. Emission brightness of the sPBI-PS(Li+) PLEC did not raise upon increasing the ionic conductivity of the luminescent layer.
|
3 |
Estudo das propriedades elétricas de células eletroquímicas emissoras de luz de derivados de polifluoreno / Electric properties study of polymer light-emitting electrochemical cells based on polyfluorene derivativesGozzi, Giovani 30 November 2011 (has links)
Células eletroquímicas poliméricas emissoras de luz, PLECs, são dispositivos eletrônicos orgânicos que vêm despertando muito interesse comercial por operarem sob baixa tensão com alto desempenho e sem a necessidade de eletrodos específicos, como o óxido de estanho e índio (ITO), cálcio entre outros. Esta característica confere a possibilidade de processamento de baixo custo e de obter dispositivos flexíveis. Nas PLECs a injeção de portadores eletrônicos de carga nas interfaces, entre a camada ativa do dispositivo e seus eletrodos, é facilitada por ação de espécies iônicas, que são inseridas no material polimérico por adição de um sal. Do ponto de vista científico, o interesse atual reside na completa compreensão dos fenômenos de transporte de portadores eletrônicos no interior do dispositivo. Hoje existem dois modelos concorrentes. Um considera o transporte eletrônico por difusão e o outro leva em consideração a dopagem eletroquímica e a consequente formação de uma junção PIN (semicondutor dopado tipo-p camada isolante semicondutor dopado tipo-n). Nesse contexto, propusemos a fabricação e caracterização elétrica de PLECs com diversas composições e espessuras a fim de confrontar os resultados experimentais com os modelos em questão. Demonstramos a existência de uma concentração crítica de sal, abaixo da qual a operação da PLEC é promovida predominantemente por injeção auxiliada pela formação de duplas-camadas devido ao movimento iônico. No regime de tensões mais elevadas, além da injeção, ocorre a dopagem tipo-p e tipo-n e a formação da junção PIN. Além disso, determinamos que para tensões superiores à de operação o dispositivo apresenta comportamento ôhmico, com resistência elétrica proporcional à espessura do dispositivo e praticamente independente da temperatura. Nossos resultados mostraram que no regime de tensões mais baixas deve ocorrer um processo de transporte por difusão, mas à medida que a tensão aumenta, inicia-se um processo de dopagem tipo-p de um lado e tipo-n de outro, aumentando a condutividade das regiões dopadas e finalizando com a formação de uma junção PIN. Mostramos também que a tensão acumulada nas duplas-camadas independe do tipo de polímero eletrônico, e que a tensão de operação, aquela na qual o polímero luminesce, é semelhante á do gap da banda proibida do polímero luminescente. / Polymer light emitting electrochemical cells, PLECs, are organic electronic devices that have attracted commercial interest because they operate at low voltage and exhibit high performance without the need of specific electrodes such as indium tin oxide (ITO), calcium and others. This feature provides low cost of fabrication and exible devices. The charge injection in the PLECs is facilitated by the action of ionic species, which are inserted in the polymeric material by adding a salt. This thesis treats with a controversy related to transport phenomena along the bulk of the device. Currently, there is two opposite models. One that considers that transport is driven by diffusion mechanism; and the other takes into account the formation of a PIN junction (p-type semiconductor insulating layer n-type semiconductor). Here, we proposed the fabrication and characterization of PLECs having different compositions and thickness, and the results were faced up to the models. We showed the existence of critical concentration of salt, below of which the operation of the PLECs are mainly due to injection stimulated by the ionic double-layer. For higher applied voltages, the injection still exists but it is followed by a PIN junction formation. We also verified that for voltages above the turn-on the device electrical resistance is proportional to the sample thickness and is practically temperature-independent. Our results showed that for low voltages the transport is dominated by diffusion, but as the voltage increases, the semiconducting layer starts to be doped: p-type in one side, and n-type in the other. Therefore, the conductivity of the semiconducting layer increases, and it finalizes by the formation of the PIN junction. Finally, we showed that the double-layer characteristic does not depend on the electronic polymer, and that the value of the turn-on voltage is very close to that of the electronic gap of the forbidden band.
|
4 |
Condução eletrônica e iônica em células eletroquímicas poliméricas emissoras de luz / Electronic and ionic conduction in polymer light-emitting electrochemical cellsSousa, Washington da Silva 29 April 2014 (has links)
As células eletroquímicas emissoras de luz (PLECs) pertencem a um novo ramo importante na optoeletrônica orgânica devido ao seu grande potencial para ser usado como ponto - pixels para telas coloridas e também para painéis de iluminação. Diferentemente de diodos orgânicos emissores de luz (OLEDs), a tecnologia de OLECs ainda está em estágios iniciais de desenvolvimento, em comparação com a tecnologia de OLED , OLECs tem a vantagem de ser operado em ambas as polaridades de tensão ( para a frente ou de polarização reversa ), e, além disso, o seu desempenho é menos dependente dos materiais do eletrodos e a espessura da camada ativa do dispositivo. A camada ativa de um OLEC compreende uma mistura de um polímero eletroluminescente conjugado e um eletrólito de polímero. Consequentemente, o transporte elétrico durante a operação do dispositivo envolve uma combinação de dinâmica iônica e eletrônica e efeitos intrincados nas interfaces com os eletrodos. A literatura apresenta até agora duas abordagens diferentes para descrever o fenômeno de transporte nas OLECs. O modelo de eletrodinâmica, que combina separação iônica com o processo de difusão limitada eletrônica, e o modelo de dopagem eletroquímico que considera uma dopagem eletroquímica do polímero conjugado, dando a formação de uma junção p-i-n na camada ativa. Usando as medidas de decaimento da corrente sobre uma voltagem aplicada e espectroscopia de impedância /admissão , investigamos o transporte de portadores de carga em um OLEC tendo como camada ativa uma mistura de poli [ ( 9, 9 - dioctyl - 2, 7 - divinileno - fluorenileno ) - alt - co - { 2 - metoxi -5 - ( 2 - etil- hexiloxi ) -1,4 - fenileno } ] ( PFGE ) , com poli ( óxido de etileno ) ( PEO ) complexado com triflato de lítio ( TriLi ) , na proporção 01:01 : X , onde X foi de 0,10 , 0,05 , 0,01 , 0,00. Foram obtidos dados importantes relacionados com efeito iônico e eletrônico durante a operação deste PLEC, sendo que as medidas de transiente e de impedância mostraram que o movimento iônico auxilia o processo de injeção eletrônica. Outro fato relevante é que o desempenho da PLEC é dependente da formação da dupla camada iônica que tem sua espessura abaixo de 10 nm e que o processo de sua formação depende altamente da condução iônica, que por sua vez vai depender da quantidade de íons e de sua mobilidade, sendo influenciando por fatores como concentração de sal e temperatura do dispositivo. As medidas realizadas mostram que as PLECs com 2,5 e 5% de concentração de sal apresentam o melhor desempenho. / Organic Light-emitting Electrochemical Devices (OLECs) belong to a new important branch in organic optoelectronics due to their great potential to be used as dot-pixels for color displays and also to lighting panels. Differently from organic light-emitting diodes (OLEDs), the technology of OLECs is still in early stages of development. In comparison to OLED technology, OLECs have the advantage in being operated in both voltage polarities (forward or reverse bias), and, in addition, their performance is less dependent on the electrode materials and the device thickness. The active layer of an OLEC comprises a mixture of a conjugated electroluminescent polymer and a polymer electrolyte. Consequently, the electrical transport during the device operation involves a combination of ionic and electronic dynamics and intricate effects at the interfaces with the electrodes. The literature presents so far two different approaches to describe the transport phenomenon in the OLECs. The electrodynamic model, which combines ionic charge separation with electronic diffusionlimited process, and the electrochemical doping model that consider an electrochemical doping of the conjugated polymer, giving and the formation of a p-i-n junction in the active layer. Using current decay under an applied voltage measurements and impedance/admittance spectroscopy, we investigate charge carrier transport in an OLEC having as active layer a mixture of poly [(9, 9 - dioctyl - 2, 7 - divinileno - fluorenileno) - alt - co - {2 - methoxy -5 - (2 - ethyl-hexyloxy) -1,4 - phenylene}] (PFGE), with poly (ethylene oxide) (PEO) complexed with lithium triflate (TriLi), in the proportion 1:1:X, where X was 0.10, 0.05, 0.01, 0.00. We have obtained important results related to ionic and electronic effect during this operation PLEC. This measurements of transient current and impedance showed that ionic movement aids the process of electron injection. Another relevant fact is that the performance of PLEC is dependent on the formation of ionic double layer having thickness below 10 nm. The formation of this double layers is highly dependent on the ionic conduction, which in turn will depend on the amount of ions. The ionic mobility is influenced by factors such as salt concentration and temperature of the device. The measurements show that PLECS with 2.5 and 5% salt concentration had the best perform.
|
5 |
Inkjet deposition of electrolyte : Towards Fully Printed Light-emitting Electrochemical CellsLindh, Mattias January 2013 (has links)
Organic electronics is a hot and modern topic which holds great promise for present and future applications. One such application is the light-emitting electrochemical cell (LEC). It can be fully solution processed and driven at low voltage providing light emission from a large surface. Inkjet printers available today can print a variety of inks, both solutions and dispersions. The technique is scalable and a quick and easy way to accurately deposit small quantities of material in user definable patterns onto a substrate. This is desirable to make low cost and efficient optical devices like displays. In this thesis it has been shown that solid electrolytes, after being dissolved in a liquid solvent, can be inkjet printed into a set of well separated distinct drops with an average maximum thickness of 150 nm. The electrolytes are commonly used in LECs and comprised by poly(ethylene glycol) with molar masses ranging from 1 – 35 kg/mol, and potassium trifluoromethanesulfonate (KCF3 SO3 )—together dissolved incyclohexanone to form an ink. The smallest achieved edge to edge distance between the printed drops was 40 μm. Together with a drop diameter of 50 μm it yields a coverage of 24% at a resolution of 280 dpi. Profiles of dried deposited drops of electrolyte were examined with a profilometer, which showed adistinct coffee ring effect on each drop. In particular, the ridges of the coffee rings were broken into pillar like shapes, together forming a structure akin to a scandinavian ancient remnant called stone ship. Different drop diameters were measured in and between the indium tin oxide samples. The drops’ speeds and sizes atejection from the nozzles seemed unchanged, and wettability is most probably the physical phenomena tolook into in order to understand what generates the differences. Local changes in surface roughness and/or surface energy, possibly originating from the cleaning process of the samples, is most likely the cause. No indications towards large differences in surface tension between the printable inks were seen, however their viscoelastic properties were not measured. As part of the thesis work a LEC characterization set-up was built. It drives a LEC at constant currentand measures the driving voltage, -current, and luminance over time. The set-up is controlled by a Labview virtual instrument and the data exported to a text-file for later analysis. The precision of the luminance measurements is ±0.1 cd/m2 for readings < 50 cd/m2 , but the accuracy is uncertain. The conclusion of this thesis is that it is indeed possible to print solid electrolytes dissolved in cyclo-hexanone with an inkjet printer. However, in order to fully understand the spreading and drying of thedrops, studies of the inks’ viscoelastic properties, together with surface roughness and -energy density ofthe substrates, are needed. The largest molar mass of nicely printable poly(ethylene glycol), at an ink concentration of 10 mg/ml, was 35 kg/mol. This is comparable to the molar mass of an active light-emittingmaterial, “SuperYellow”, often used in LECs. Even though their respective molecular structures are very different, this indicates that inkjet printing of complete LEC-inks, containing both the active material and solid electrolyte, is feasible. Most probably it would require substantial tuning of the printing parameters. This thesis provides further hope for future fully inkjet printed LECs.
|
6 |
Condução eletrônica e iônica em células eletroquímicas poliméricas emissoras de luz / Electronic and ionic conduction in polymer light-emitting electrochemical cellsWashington da Silva Sousa 29 April 2014 (has links)
As células eletroquímicas emissoras de luz (PLECs) pertencem a um novo ramo importante na optoeletrônica orgânica devido ao seu grande potencial para ser usado como ponto - pixels para telas coloridas e também para painéis de iluminação. Diferentemente de diodos orgânicos emissores de luz (OLEDs), a tecnologia de OLECs ainda está em estágios iniciais de desenvolvimento, em comparação com a tecnologia de OLED , OLECs tem a vantagem de ser operado em ambas as polaridades de tensão ( para a frente ou de polarização reversa ), e, além disso, o seu desempenho é menos dependente dos materiais do eletrodos e a espessura da camada ativa do dispositivo. A camada ativa de um OLEC compreende uma mistura de um polímero eletroluminescente conjugado e um eletrólito de polímero. Consequentemente, o transporte elétrico durante a operação do dispositivo envolve uma combinação de dinâmica iônica e eletrônica e efeitos intrincados nas interfaces com os eletrodos. A literatura apresenta até agora duas abordagens diferentes para descrever o fenômeno de transporte nas OLECs. O modelo de eletrodinâmica, que combina separação iônica com o processo de difusão limitada eletrônica, e o modelo de dopagem eletroquímico que considera uma dopagem eletroquímica do polímero conjugado, dando a formação de uma junção p-i-n na camada ativa. Usando as medidas de decaimento da corrente sobre uma voltagem aplicada e espectroscopia de impedância /admissão , investigamos o transporte de portadores de carga em um OLEC tendo como camada ativa uma mistura de poli [ ( 9, 9 - dioctyl - 2, 7 - divinileno - fluorenileno ) - alt - co - { 2 - metoxi -5 - ( 2 - etil- hexiloxi ) -1,4 - fenileno } ] ( PFGE ) , com poli ( óxido de etileno ) ( PEO ) complexado com triflato de lítio ( TriLi ) , na proporção 01:01 : X , onde X foi de 0,10 , 0,05 , 0,01 , 0,00. Foram obtidos dados importantes relacionados com efeito iônico e eletrônico durante a operação deste PLEC, sendo que as medidas de transiente e de impedância mostraram que o movimento iônico auxilia o processo de injeção eletrônica. Outro fato relevante é que o desempenho da PLEC é dependente da formação da dupla camada iônica que tem sua espessura abaixo de 10 nm e que o processo de sua formação depende altamente da condução iônica, que por sua vez vai depender da quantidade de íons e de sua mobilidade, sendo influenciando por fatores como concentração de sal e temperatura do dispositivo. As medidas realizadas mostram que as PLECs com 2,5 e 5% de concentração de sal apresentam o melhor desempenho. / Organic Light-emitting Electrochemical Devices (OLECs) belong to a new important branch in organic optoelectronics due to their great potential to be used as dot-pixels for color displays and also to lighting panels. Differently from organic light-emitting diodes (OLEDs), the technology of OLECs is still in early stages of development. In comparison to OLED technology, OLECs have the advantage in being operated in both voltage polarities (forward or reverse bias), and, in addition, their performance is less dependent on the electrode materials and the device thickness. The active layer of an OLEC comprises a mixture of a conjugated electroluminescent polymer and a polymer electrolyte. Consequently, the electrical transport during the device operation involves a combination of ionic and electronic dynamics and intricate effects at the interfaces with the electrodes. The literature presents so far two different approaches to describe the transport phenomenon in the OLECs. The electrodynamic model, which combines ionic charge separation with electronic diffusionlimited process, and the electrochemical doping model that consider an electrochemical doping of the conjugated polymer, giving and the formation of a p-i-n junction in the active layer. Using current decay under an applied voltage measurements and impedance/admittance spectroscopy, we investigate charge carrier transport in an OLEC having as active layer a mixture of poly [(9, 9 - dioctyl - 2, 7 - divinileno - fluorenileno) - alt - co - {2 - methoxy -5 - (2 - ethyl-hexyloxy) -1,4 - phenylene}] (PFGE), with poly (ethylene oxide) (PEO) complexed with lithium triflate (TriLi), in the proportion 1:1:X, where X was 0.10, 0.05, 0.01, 0.00. We have obtained important results related to ionic and electronic effect during this operation PLEC. This measurements of transient current and impedance showed that ionic movement aids the process of electron injection. Another relevant fact is that the performance of PLEC is dependent on the formation of ionic double layer having thickness below 10 nm. The formation of this double layers is highly dependent on the ionic conduction, which in turn will depend on the amount of ions. The ionic mobility is influenced by factors such as salt concentration and temperature of the device. The measurements show that PLECS with 2.5 and 5% salt concentration had the best perform.
|
7 |
Estudo das propriedades elétricas de células eletroquímicas emissoras de luz de derivados de polifluoreno / Electric properties study of polymer light-emitting electrochemical cells based on polyfluorene derivativesGiovani Gozzi 30 November 2011 (has links)
Células eletroquímicas poliméricas emissoras de luz, PLECs, são dispositivos eletrônicos orgânicos que vêm despertando muito interesse comercial por operarem sob baixa tensão com alto desempenho e sem a necessidade de eletrodos específicos, como o óxido de estanho e índio (ITO), cálcio entre outros. Esta característica confere a possibilidade de processamento de baixo custo e de obter dispositivos flexíveis. Nas PLECs a injeção de portadores eletrônicos de carga nas interfaces, entre a camada ativa do dispositivo e seus eletrodos, é facilitada por ação de espécies iônicas, que são inseridas no material polimérico por adição de um sal. Do ponto de vista científico, o interesse atual reside na completa compreensão dos fenômenos de transporte de portadores eletrônicos no interior do dispositivo. Hoje existem dois modelos concorrentes. Um considera o transporte eletrônico por difusão e o outro leva em consideração a dopagem eletroquímica e a consequente formação de uma junção PIN (semicondutor dopado tipo-p camada isolante semicondutor dopado tipo-n). Nesse contexto, propusemos a fabricação e caracterização elétrica de PLECs com diversas composições e espessuras a fim de confrontar os resultados experimentais com os modelos em questão. Demonstramos a existência de uma concentração crítica de sal, abaixo da qual a operação da PLEC é promovida predominantemente por injeção auxiliada pela formação de duplas-camadas devido ao movimento iônico. No regime de tensões mais elevadas, além da injeção, ocorre a dopagem tipo-p e tipo-n e a formação da junção PIN. Além disso, determinamos que para tensões superiores à de operação o dispositivo apresenta comportamento ôhmico, com resistência elétrica proporcional à espessura do dispositivo e praticamente independente da temperatura. Nossos resultados mostraram que no regime de tensões mais baixas deve ocorrer um processo de transporte por difusão, mas à medida que a tensão aumenta, inicia-se um processo de dopagem tipo-p de um lado e tipo-n de outro, aumentando a condutividade das regiões dopadas e finalizando com a formação de uma junção PIN. Mostramos também que a tensão acumulada nas duplas-camadas independe do tipo de polímero eletrônico, e que a tensão de operação, aquela na qual o polímero luminesce, é semelhante á do gap da banda proibida do polímero luminescente. / Polymer light emitting electrochemical cells, PLECs, are organic electronic devices that have attracted commercial interest because they operate at low voltage and exhibit high performance without the need of specific electrodes such as indium tin oxide (ITO), calcium and others. This feature provides low cost of fabrication and exible devices. The charge injection in the PLECs is facilitated by the action of ionic species, which are inserted in the polymeric material by adding a salt. This thesis treats with a controversy related to transport phenomena along the bulk of the device. Currently, there is two opposite models. One that considers that transport is driven by diffusion mechanism; and the other takes into account the formation of a PIN junction (p-type semiconductor insulating layer n-type semiconductor). Here, we proposed the fabrication and characterization of PLECs having different compositions and thickness, and the results were faced up to the models. We showed the existence of critical concentration of salt, below of which the operation of the PLECs are mainly due to injection stimulated by the ionic double-layer. For higher applied voltages, the injection still exists but it is followed by a PIN junction formation. We also verified that for voltages above the turn-on the device electrical resistance is proportional to the sample thickness and is practically temperature-independent. Our results showed that for low voltages the transport is dominated by diffusion, but as the voltage increases, the semiconducting layer starts to be doped: p-type in one side, and n-type in the other. Therefore, the conductivity of the semiconducting layer increases, and it finalizes by the formation of the PIN junction. Finally, we showed that the double-layer characteristic does not depend on the electronic polymer, and that the value of the turn-on voltage is very close to that of the electronic gap of the forbidden band.
|
8 |
Utilizing an efficient color-conversion layer for realization of a white light-emitting electrochemical cellVedin, Joel January 2016 (has links)
Organic semiconducting materials have received a lot of attention in recent years and can now be found in many applications. One of the applications, the light emitting electrochemical cell (LEC) has emerged due to its flat and lightweight device structure, low operating voltage, and possibility to be fully solution processed. Today LECs can emit light of various colors, but to be applicable in the lighting industry, white light need to be produced in an efficient way. White light on the other hand, is one of the toughest "colors" to achieve in an efficient way, and is of particular interest in general lighting applications, where high color-rendering index devices are necessary. In this thesis I show that blue light can be partially converted, into white light, by utilizing the photoluminescence of color conversion layers (CCLs). Furthermore, I show that a high color-quality white light can be attained by adopting a blue-emitting LEC with a CCL. Particularly, three different color-conversion materials were embedded onto a blue bottom-emitting LEC, to study the resulting spectrum. One of the materials, MEH-PPV, have good absorption compatibility with the electroluminescence of the blue emitters, but the materials photoluminescence do not cover the red to deep-red range of the spectrum. These parts of the spectrum are necessary to obtain high color rendering indices (≥80). A single layer of MEH-PPV adapted onto a blue-emitting LEC, led to a cold white LEC with CIE-coordinates x = 0.29, and y = 0.36, color-rendering index = 71, and correlated color temperature = 7200 K. These properties makes it potentially useful in outdoor-lighting applications. The photoluminescence of another studied color-converting material, polymer red, covers the red to deep-red range of the spectrum but the material lacks absorption in the green parts of the blue emitters electroluminescence spectrum. Thus it is necessary to combine it with MEH-PPV to be able to absorb all wavelengths from the blue-emitter and get a broad light-spectrum out of the device. In order to preserve a part of the blue light, a new device configuration was designed. It features a top-emitting blue LEC with a dual-layer CCL which reach an impressive color rendering index = 89 at a correlated color temperature = 6400 K (CIE-coordinates x = 0.31, y = 0.33). The color-rendering index is the highest reported for a white LEC. The absence of UV-, and IR-radiation, together with the high color rendering properties make the white LEC a possible candidate for even the most demanding lighting-applications, such as art galleries, and shop display windows, together with indoor lighting. In this thesis, I show that the CCLs function well. However, for the LECs to be worthy competitors, the efficiency and lifetime of the blue emitter need improvements.
|
9 |
Creating nanopatterned polymer films for use in light-emitting electrochemical cellsMoberg, Thomas January 2018 (has links)
Thermal nanoimprint lithography (T-NIL) is a cheap and fast technique to produce nanopatterns in polymeric materials. It creates these patterns by pressing a stamp down into a polymer film that has been heated above its glass transition temperature. These nanopatterned polymer films can be used in a wide variety of scientific fields, not the least the organic semiconductor industry. There the nanopatterned films have, among else, been used to improve the efficiency of organic light-emitting diodes (OLEDs). The light-emitting electrochemical cell (LEC), which is similar in structure to an OLED, also uses polymer films in their device structure but the light emitting layer also contains an electrolyte. However, it has not been shown if nanopatterns can improve LECs as well or if it is even possible to make an imprint in their polymer films that are mixed with an electrolyte. This thesis shows that T-NIL can be used to imprint nanopatterns in films made of poly(ethylene oxide) and the conjugated polymer Super Yellow. The best nanopatterns were produced by setting the imprint parameters to 85 °C, 10 bar, 1800 s for poly(ethylene oxide) and 115 °C, 20 bar, 1800 s for Super Yellow. Imprints were also performed on polystyrene but no nanopatterns could be produced. This was most likely because the stamp could not handle the high temperature that is required to make a nanopattern in polystyrene. The best imprint parameters of Super Yellow were then used to produce a pattern in a film made of Super Yellow mixed with the salt tetrahexylammonium tetrafluoroborate (THABF4) in order to be able to produce one imprinted and one reference LEC. The imprinted LEC had a luminosity of 139 cd/m2, an improvement of 20% compared to the reference’s 115 cd/m2 when operated under identical conditions. The forward direction and the angular dependent electroluminescence spectrum of the imprinted LEC clearly showed an effect not observed in the reference. These findings show that the polymer films used in a LEC can be imprinted with a nanopattern by using T-NIL. The imprinted films can be used to create functional LECs that show different behavior and a higher luminosity compared to a non-imprinted reference. If these results can be repeated it might be the starting point of a brighter future.
|
10 |
Bilayer Light-Emitting Electrochemical Cells for Signage and Lighting ApplicationsLindh, E. Mattias January 2016 (has links)
Artificial light surrounds us in a manifold of shapes. It is mainly utilized for illumination, but also for graphical communication of complex and evolving messages and information, among other things. It can be generated in different ways with incandescent lamps and fluorescent tubes constituting two common examples. Organic solid state light-generation technologies, which boast advantages such as solution processability, thin and flexible form factors, and large versatility, are modern additions to the field. But regardless of the means of generation, whenever light is to be used to communicate information, as signage or displays, it needs to be patterned. Unfortunately patterning is often complicated and expensive from a fabrication point of view, or renders the devices inefficient. To bridge the gap between present technologies and the need for low-cost and low-complexity patterned light emitters, it is important to develop new device architectures and/or fabrication procedures. In this thesis we show that patterned light emission can be attained from solution processable bilayer light-emitting electrochemical cells (LECs), in which the bilayer stack comprises an electrolyte and an organic semiconductor as the first and second layer, respectively. We investigate a subtractive direct-write approach, in which electrolyte is displaced and patterned by the contact motion of a thin stylus, as well as an additive inkjet-patterning technique. Both result in electroluminescent patterns, e.g., light-emitting sketches and microscopic signage with high pixel density. But they can also build macroscopic patterned regions with homogeneous emission depending on the design of electrolyte features. Using an in-operando optical microscopy study we have investigated the operational physics and some limiting factors of the bilayer LECs. More specifically we find that the electrolyte film homogeneity is a key property for high optical quality, and that the emitting region is defined by the location of the interfaces between electrolyte, anode, and organic semiconductor. We observe that the cationic diffusion length is less than one micrometer in our employed organic semiconductors, and rationalize the localized emission by cationic electric double-layer formation at the cathode, and the electronically insulating electrolyte at the anode. To date, the presented luminescent signage devices feature high-resolution patterns, in both pixelated and line-art form, and show great robustness in terms of fabrication and material compatibility. Being LECs, they have the potential for truly low-cost solution processing, which opens up for new applications and implementations. However, these first reports on patterned bilayer LECs leave plenty of room for improvements of the optical and electronic characteristics. For instance, if the optoelectronic properties of the devices were better understood, a rational design of microscopic electrolyte features could provide for both more efficient LECs, and for more homogeneous light emission from the patterned regions.
|
Page generated in 0.1222 seconds