1 |
Rôle du carbone et de l’oxygène sur les phénomènes de dégradation dans le silicium destiné aux applications photovoltaïquesMong-The Yen, Virginie 04 July 2013 (has links)
La dégradation induite par éclairement (Light Induced Degradation : LID), s'exprimant par la perte de qualités électriques, est devenu un problème récurrent dans les modules photovoltaïques de silicium de qualité métallurgique (compensé en dopants). Compte tenu des nombreuses impuretés présentes dans ce matériau, la compréhension des mécanismes mis en jeu est très complexe et reste incomplète. Pour cette raison, les seuls mécanismes identifiés à ce jour sont liées à l'action de complexes BO2i. Les travaux réalisés durant cette thèse sur différentes qualités de plaquettes de silicium de type p, ont mis en évidence la participation d'une autre réaction, activée thermiquement à 0.68 eV. D'après nos résultats cette réaction, associée aux complexes CiOi, n'est pas systématique. Elle semble agir si les échantillons ont une concentration en carbone substitutionnel supérieure ou égale à celle du dopage net et s'ils sont soumis à des températures T ≥ 50°C. Cette réaction, intervenant dans la LID, est donc indépendante du degré de compensation du matériau. Nous avons également mis en évidence un phénomène de dégradation à l'obscurité (DID : Degradation In Dark), conduisant à des pertes électriques analogues à celles obtenues par la LID. Cette DID, apparaissant uniquement par chauffe, semble faire intervenir des réactions similaires à celles de la LID. Son étude permet de supposer que des impuretés primaires (lacunes, auto-interstitiel) participent également à ces phénomènes. / Light induced degradation (LID), leading to a deterioration of electrical properties, has become a recurring problem in photovoltaic modules based on metallurgical grade silicon. Due to the many impurities present in the material (compensated by dopants), the mechanisms involved in this phenomenon are very complex and not very well understood. For this reason, the only reactions identified are related to the action of BO2i complexes.Works carried out during this thesis on different grades of p-type silicon wafers have highlighted the involvement of another thermally activated reaction at 0.68 eV. According to our results, this reaction, associated with CiOi complexes, is not systematic. It seems to act if the samples have a substitutional carbon concentration greater than or equal to the net doping and if they are subjected to temperatures T ≥ 50° C. We also highlighted the emergence of a phenomenon of degradation in the dark (DID), leading to similar electrical losses to those obtained by LID. This DID, appearing only by heating, seems to involve similar reactions to LID. Its study allows us to assume that the primary impurities (vacancies, self-interstitials) are also involved in these phenomena.
|
2 |
Degradace solárních článků světlem / Light Induced Degradation of Solar CellsIndra, Jiří January 2010 (has links)
This master’s thesis deals with light induced degradation problems. In theoretical section it describes essentials of PN junction function and next light induced degradation mechanisms of solar cells and its symptoms at solar cell operation. In practical section it deals with set of measurements of solar cells since production of the silicon wafer to the complete solar cell. Selected cells are submitted to light induced degradation, measured dependencies are then evaluated. Degraded samples are subsequently recovered by two ways at high temperature treatment. The issues are evaluated.
|
3 |
Development of high-efficiency boron diffused silicon solar cellsDas, Arnab 04 May 2012 (has links)
The objective of the proposed research is to develop low-cost, screen-printed 20% efficient silicon solar cells. In the first part of this thesis, a ~19% efficient, screen-printed cell was fabricated using the commercially-dominant aluminum back surface field (Al-BSF) cell structure. Device modeling was then used to determine that increasing the efficiency to 20% required improvements in both back surface passivation and rear reflectance. In the second part of this thesis, a passivated, transparent boron BSF (B-BSF) structure was proposed as a high-throughput method for realizing these improvements. The first step in fabricating the proposed B-BSF cell involved the successful development of a water-based, spin-on solution of boric acid as a low-cost, non-toxic and non-pyrophoric alternative to common boron diffusion sources such as boron tribromide. A review of the literature shows that a common problem with boron diffusion is severe bulk lifetime degradation, with Fe contamination being commonly speculated as the cause. An experimental study was therefore devised in which the impact of boron diffusion and subsequent cell process steps on the bulk lifetime and bulk iron contamination was tracked. From this study, a model for boron diffusion-induced Fe contamination was developed along with methods for gettering Fe from the substrate. A key achievement of this thesis was the discovery of a novel, negatively charged, aluminum-doped spin-on glass (SOG) which can, in a short thermal step, simultaneously getter Fe and provide stable, high-quality passivation of planar, boron-diffused Si surfaces. Since past attempts at achieving low-cost, high-efficiency, boron-diffused cells have suffered from bulk lifetime degradation and difficulties with passivating a boron-diffused Si surface, the Al-doped SOG provides a solution to both challenges. Since a high rear reflectance is important for achieving high-efficiencies, an experimental study of various reflectors was undertaken and a silver colloid material was found which exhibits both high electrical conductivity and Lambertian reflectance >95%. The work on boric acid diffusion, iron gettering, surface passivation and rear reflectors was successfully integrated into a 20.2% efficient, screen-printed, B-BSF cell fabricated on 300 µm thick, p-type float-zone (FZ) Si wafers. Both device theory and modeling was used to show that, due to its well-passivated surfaces, this cell would suffer a large loss in efficiency due to light-induced degradation (LID) if it were fabricated on commercial p-type Czochralski (Cz) Si substrates. Since n-type Si substrates do not suffer from LID, the p-type process was slightly tweaked and applied to n-type FZ wafers, resulting in 20.3% efficient cells on 190 µm thick wafers. Computer modeling shows that both the p-type and n-type cells can maintain efficiencies of 20% for wafers as thin as 100 µm.
|
4 |
Development of low-cost high-efficiency commercial-ready advanced silicon solar cellsLai, Jiun-Hong 27 August 2014 (has links)
The objective of the research in this thesis is to develop manufacturable high-efficiency silicon solar cells at low-cost through advanced cell design and technological innovations using industrially feasible processes and equipment on commercial grade Czochralski (Cz) large-area (239 cm2) silicon wafers. This is accomplished by reducing both the electrical and optical losses in solar cells through fundamental understanding, applied research and demonstrating the success by fabricating large-area commercial ready cells with much higher efficiency than the traditional Si cells. By developing and integrating multiple efficiency enhancement features, namely low-cost high sheet resistance homogeneous emitter, optimized surface passivation, optimized rear reflector, back line contacts, and improved screen-printing with narrow grid lines, 20.8% efficient screen-printed PERC (passivated emitter and rear cell) solar cells were achieved on commercial grade 239 cm2 p-type Cz silicon wafers.
|
5 |
Compensation engineering for silicon solar cellsForster, Maxime 17 December 2012 (has links) (PDF)
This thesis focuses on the effects of dopant compensation on the electrical properties of crystalline silicon relevant to the operation of solar cells. We show that the control of the net dopant density, which is essential to the fabrication of high-efficiency solar cells, is very challenging in ingots crystallized with silicon feedstock containing both boron and phosphorus such as upgraded metallurgical-grade silicon. This is because of the strong segregation of phosphorus which induces large net dopant density variations along directionally solidified silicon crystals. To overcome this issue, we propose to use gallium co-doping during crystallization, and demonstrate its potential to control the net dopant density along p-type and n-type silicon ingots grown with silicon containing boron and phosphorus. The characteristics of the resulting highly-compensated material are identified to be: a strong impact of incomplete ionization of dopants on the majority carrier density, an important reduction of the mobility compared to theoretical models and a recombination lifetime which is determined by the net dopant density and dominated after long-term illumination by the boron-oxygen recombination centre. To allow accurate modelling of upgraded-metallurgical silicon solar cells, we propose a parameterization of these fundamental properties of compensated silicon. We study the light-induced lifetime degradation in p-type and n-type Si with a wide range of dopant concentrations and compensation levels and show that the boron-oxygen defect is a grown-in complex involving substitutional boron and is rendered electrically active upon injection of carriers through a charge-driven reconfiguration of the defect. Finally, we apply gallium co-doping to the crystallization of upgraded-metallurgical silicon and demonstrate that it allows to significantly increase the tolerance to phosphorus without compromising neither the ingot yield nor the solar cells performance before light-induced degradation.
|
6 |
Compensation engineering for silicon solar cells / Ingénierie de compensation pour cellules solaires en siliciumForster, Maxime 17 December 2012 (has links)
Cette thèse s’intéresse aux effets de la compensation des dopants sur les propriétés électriques du silicium cristallin. Nous montrons que le contrôle du dopage net, qui est indispensable à la réalisation de cellules solaires à haut rendement, s’avère difficile dans les lingots cristallisés à partir de silicium contenant à la fois du bore et du phosphore. Cette difficulté s’explique par la forte ségrégation du phosphore durant la cristallisation, qui donne lieu à d’importantes variations de dopage net le long des lingots de silicium solidifés de façon directionelle. Pour résoudre ce problème, nous proposons le co-dopage au gallium pendant la cristallisation et prouvons l’efficacité de cette technique pour contrôler le dopage net le long de lingots de type p ou n fabriqués à partir d’une charge de silicium contenant du bore et du phosphore. Nous identifions les spécificités du matériau fortement compensé ainsi obtenu comme étant: une forte sensibilité de la densité de porteurs majoritaires à l’ionisation incomplète des dopants, une réduction importante de la mobilité comparée aux modèles théoriques et une durée de vie des porteurs qui est déterminée par la densité de porteurs majoritaires et dominée après éclairement prolongé par les centres de recombinaison liés aux complexes de bore et d’oxygène. Pour permettre la modélisation de cellules solaires à base de silicium purifié par voie métallurgique, nous proposons une paramétrisation des propriétés fondamentales du silicium compensé mentionnées ci dessus. Nous étudions également la dégradation de la durée de vie des porteurs sous éclairement dans des échantillons de silicium de type p et n présentant une large gamme de niveaux de dopage et de compensation. Nous montrons que le défaut bore-oxygène est issu d’un complexe formé à partir de bore substitutionnel pendant la fabrication des lingots et activé sous injection de porteurs par une reconfiguration du défaut assistée par des charges positives. Finalement, nous appliquons le co-dopage au gallium pour la cristallisation de silicium UMG et démontrons que cette technique permet d’augmenter sensiblement la tolérance au phosphore sans compromettre le rendement matière de l’étape de cristallisation ou la performance des cellules solaires avant dégradation sous éclairement. / This thesis focuses on the effects of dopant compensation on the electrical properties of crystalline silicon relevant to the operation of solar cells. We show that the control of the net dopant density, which is essential to the fabrication of high-efficiency solar cells, is very challenging in ingots crystallized with silicon feedstock containing both boron and phosphorus such as upgraded metallurgical-grade silicon. This is because of the strong segregation of phosphorus which induces large net dopant density variations along directionally solidified silicon crystals. To overcome this issue, we propose to use gallium co-doping during crystallization, and demonstrate its potential to control the net dopant density along p-type and n-type silicon ingots grown with silicon containing boron and phosphorus. The characteristics of the resulting highly-compensated material are identified to be: a strong impact of incomplete ionization of dopants on the majority carrier density, an important reduction of the mobility compared to theoretical models and a recombination lifetime which is determined by the net dopant density and dominated after long-term illumination by the boron-oxygen recombination centre. To allow accurate modelling of upgraded-metallurgical silicon solar cells, we propose a parameterization of these fundamental properties of compensated silicon. We study the light-induced lifetime degradation in p-type and n-type Si with a wide range of dopant concentrations and compensation levels and show that the boron-oxygen defect is a grown-in complex involving substitutional boron and is rendered electrically active upon injection of carriers through a charge-driven reconfiguration of the defect. Finally, we apply gallium co-doping to the crystallization of upgraded-metallurgical silicon and demonstrate that it allows to significantly increase the tolerance to phosphorus without compromising neither the ingot yield nor the solar cells performance before light-induced degradation.
|
Page generated in 0.1054 seconds