• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Enzymatic dimerization of substituted phenols

Schneider, Robert L., January 1961 (has links) (PDF)
Thesis (Ph. D.)--Institute of Paper Chemistry, 1961. / Includes bibliographical references (p. 90-94).
2

Paleoreconstruction of Particulate Organic Carbon Inputs to the High-Arctic Colville River Delta, Beaufort Sea, Alaska

Schreiner, Kathryn 1983- 02 October 2013 (has links)
High Arctic permafrosted soils represent a massive sink in the global carbon cycle, accounting for twice as much carbon as what is currently stored as carbon dioxide in the atmosphere. However, with current warming trends this sink is in danger of thawing and potentially releasing large amounts of carbon as both carbon dioxide and methane into the atmosphere. It is difficult to make predictions about the future of this sink without knowing how it has reacted to past temperature and climate changes. This dissertation summarizes the results of the first study to look at long term, fine scale organic carbon delivery by the high-Arctic Colville River into Simpson’s Lagoon in the near-shore Beaufort Sea. Modern delivery of organic carbon to the Lagoon was determined to come from a variety of sources through the use of a three end-member mixing model and sediment biomarker concentrations. These sources include the Colville River in the western area of the Lagoon near the river mouth, marine sources in areas of the Lagoon without protective barrier islands, and coastal erosional sources and the Mackenzie River in the eastern area of the Lagoon. Downcore organic carbon delivery was measured on two cores in the Lagoon, one taken near the mouth of the Colville River (spans about 1800 years of history) and one taken on the eastern end of the Lagoon (spans about 600 years of history). Bulk organic parameters and biomarkers were measured in both cores and analyzed with Principle Component Analysis to determine long-term trends in organic carbon delivery. It was shown that at various times in the past, highly degraded organic carbon inputs of what is likely soil and peat carbon were delivered to the Lagoon. At other times, inputs of fresher, non-degraded, terrestrially-derived organic carbon inputs of what are likely higher amounts of plant and vegetative material was delivered to the Lagoon. Inputs of degraded soil carbon were also shown to correspond to higher temperatures on the North Slope of Alaska, likely indicating that warmer temperatures lead to a thawing of permafrost and in turn organic carbon mobilization to the coastal Beaufort Sea.
3

Untersuchungen zur Hydrogenolyse von Lignin in Zinkchlorid/Kaliumchlorid Salzschmelzen unter Berücksichtigung struktureller Merkmale

Appelt, Jörn 19 April 2013 (has links)
In Hinblick auf den stetig steigenden Bedarf der chemischen Industrie an Grundstoffchemikalien und der teilweise unsicheren Versorgung mit Erdöl und Erdgas ist es notwendig alternative Rohstoffe und Verwertungspfade für die Bereitstellung von Basischemikalien zu finden. Ziel der vorliegenden Arbeit war die Untersuchung der Hydrogenolyse von Lignin in niedermolekulare Produkte unter Verwendung geeigneter Salzschmelzen. Es konnte gezeigt werden, dass Lignin in Zinkchlorid/Kaliumchloridschmelzen in niedermolekulare Produkte abgebaut werden kann. Hierbei erwiesen sich der Einsatz eines entsprechenden Eutektikums und einer Alternativschmelze mit niedrigem Schmelzpunkt als hilfreich. Durch den Einsatz verschiedener Apparaturen wurden Untersuchungen in statischer und dynamischer Atmosphäre durchgeführt. Es ergaben sich während der Untersuchung Abhängigkeiten der Hydrogenolyse von verschiedenen Reaktionsparametern. Optima der Umsetzung hinsichtlich der Reaktionsparameter Temperatur, Zeit und Ligninanteil in der Schmelze wurden herausgearbeitet. Die Ausbeute an gewünschten Flüssigprodukten wurde, im Untersuchungsbereich, an diesen Punkten maximiert. Gleichzeitig war die Rückstands- und Gasbildung eingeschränkt. Es konnten Erkenntnisse eines komplexen Systems der Abhängigkeiten der Ausbeuten an Reaktionsprodukten von den Parametern der Untersuchung gewonnen werden. Die Hydrogenolyse von Lignin führte zur Aromatisierung fester Residuen sowie zur Abreicherung von Sauerstofffunktionalitäten. Komplexe Reaktionsmechanismen bewirkten den Abbau von Methoxyl-, Carboxyl- und Hydroxylgruppen der Ligninstruktur. Carbeniumionmechanismen konnten als wichtige Reaktionen zur Spaltung von Ether Arylbindungen identifiziert werden. Die Freisetzung von Monomeren und die Polymerisation anderer Intermediäre sind durch Sekundärreaktionen denkbar. Die gebildeten Flüssigprodukte bestanden hauptsächlich aus Monoaromaten (v.a. Guajakole und Kresole) und wenigen Polyaromaten. Die Selektivität der Bildung einzelner Verbindungen war gering, d.h. die Flüssigprodukte sind eine heterogene Mischung mit geringen Konzentrationen der Einzelsubstanzen. Die Unterschiede in der Struktur der Ausgangslignine bildeten sich auch in der Zusammensetzung der Flüssigprodukte ab. / In view of the steadily increasing demand of the chemical industry to base chemicals and the partial uncertain supply of crude oil and gas, it is necessary to find alternative raw materials and conversion routes for the provision of basic chemicals. The aim of the present work was to investigate the hydrogenolysis of lignin in low molecular weight products using appropriate molten salt media. It could be demonstrated that lignin can be convert in low molecular weight products using zinc chloride/potassium chloride molten salt media. The use of an appropriate eutectic melt and of an alternative melt with low melting point proved helpful. By the use of different apparatus investigations in static and dynamic atmosphere could be carried out. During the investigation dependencies of the hydrogenolysis of various reaction parameters are submitted. Optima of the hydrogenolysis regarding to reaction temperature, time and lignin content at the melt could be identified. The yields were maximized at these points in the range of investigation. Concurrently formation of gases and residues were suppressed. Some evidence of a complex system of the dependencies of the yields of reaction products are obtained from the parameters of the investigation. Hydrogenolysis of lignin leads to aromatic solid residues and to a loss of oxygen containing structures. Structures containing methoxyl-, carboxyl- and hydroxyl groups are degraded by various complex reaction mechanisms. Mechanisms of the formation of carbonium ions were identified as important reactions of the cleavage of ether aryl bonds. Secondary reactions caused the liberation of monomers and polymerisation of some intermediaries. The resulting liquid products consist mainly of monoaromatics (guaiacols and cresols) and less of polyaromatics. The selectivity of the formation of single compounds was low, i.e. the liquid products constitute a heterogenous mixture with low concentrations of the single compounds. The structural differencies of the feedstock lignins also showed at the composition of the liquid products.
4

Transport, degradation and burial of organic matter released from permafrost to the East Siberian Arctic Shelf

Bröder, Lisa-Marie January 2016 (has links)
Permafrost soils in the Arctic store large quantities of organic matter, roughly twice the amount of carbon that was present in the atmosphere before the industrial revolution. This freeze-locked carbon pool is susceptible to thawing caused by amplified global warming at high latitudes. The remobilization of old permafrost carbon facilitates its degradation to carbon dioxide and methane, thereby providing a positive feedback to climate change. Accelerating coastal erosion in addition to projected rising river discharge with enhancing sediment loads are anticipated to transport increasing amounts of land-derived organic carbon (OC) to the Arctic Ocean. On its shallow continental shelves, this material may be remineralized in the water column or in the sediments, transported without being altered off shelf towards the deep sea of the Arctic Interior or buried in marine sediments and hence sequestered from the contemporary carbon cycle. The fate of terrigenous material in the marine environment, though offering potentially important mechanisms to either strengthen or attenuate the permafrost-carbon climate feedback, is so far insufficiently understood. In this doctoral thesis, sediments from the wide East Siberian Arctic Shelf, the world’s largest shelf-sea system, were used to investigate some of the key processes for OC cycling. A range of bulk sediment properties, carbon isotopes and molecular markers were employed to elucidate the relative importance of different organic matter sources, the role of cross-shelf transport and the relevance of degradation during transport and after burial. Overall, OC released from thawing permafrost constitutes a significant proportion of the sedimentary organic matter on the East Siberian Arctic Shelf. Two sediment cores from the inner and outer East Siberian Sea recorded no substantial changes in source material or clear trends in degradation status for the last century. With increasing distance from the coast, however, strong gradients were detected towards lower concentrations of increasingly reworked land-derived OC. The time spent during cross-shelf transport was consequently found to exert first-order control on degradation. Compound-specific radiocarbon dating on terrigenous biomarkers revealed a net transport time of ~4 000 years across the 600 km wide Laptev Sea shelf, yielding degradation rate constants for bulk terrigenous OC and specific biomarkers on the order of 2-4 kyr-1. From these results, the carbon flux released by degradation of terrigenous OC in surface sediments was estimated to be ~1.7 Gg yr-1, several orders of magnitude lower than what had been quantified earlier for dissolved and particulate OC in the water column. Lower oxygen availability and close associations with the mineral matrix may protect sedimentary OC from remineralization and thereby weaken the permafrost-carbon feedback to present climate change. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Submitted. Paper 4: Manuscript.</p>
5

Compositional clues to sources and sinks of terrestrial organic matter transported to the Eurasian Arctic shelf

Karlsson, Emma January 2015 (has links)
The amount of organic carbon (OC) present in Siberian Arctic permafrost soils is estimated at twice the amount of carbon currently in the atmosphere. The shelf seas of the Arctic Ocean receive large amounts of this terrestrial OC from Eurasian Arctic rivers and from coastal erosion. Degradation of this land-derived material in the sea would result in the production of dissolved carbon dioxide and may then add to the atmospheric carbon dioxide reservoir. Observations from the Siberian Arctic suggest that transfer of carbon from land to the marine environment is accelerating. However, it is not clear how much of the transported OC is degraded and oxidized, nor how much is removed from the active carbon cycle by burial in marine sediment. Using bulk geochemical parameters, total OC, d13C and D14C isotope composition, and specific molecular markers of plant wax lipids and lignin phenols, the abundance and composition of OC was determined in both dissolved and particulate carrier phases: the colloidal OC (COC; part of the dissolved OC), particulate OC (POC), and sedimentary OC (SOC). Statistical modelling was used to quantify the relative contribution of OC sources to these phases. Terrestrial OC is derived from the seasonally thawing top layer of permafrost soil (topsoil OC) and frozen OC derived from beneath the active layer eroded at the coast, commonly identified as yedoma ice complex deposit OC (yedoma ICD-OC). These carbon pools are transported differently in the aquatic conduits. Topsoil OC was found in young DOC and POC, in the river water, and the shelf water column, suggesting long-distance transport of this fraction. The yedoma ICD-OC was found as old particulate OC that settles out rapidly to the underlying sediment and is laterally transported across the shelf, likely dispersed by bottom nepheloid layer transport or via ice rafting. These two modes of OC transport resulted in different degradation states of topsoil OC and yedoma ICD-OC. Terrestrial CuO oxidation derived biomarkers indicated a highly degraded component in the COC. In contrast, the terrestrial component of the SOC was much less degraded. In line with earlier suggestions the mineral component in yedoma ICD functions as weight and surface protection of the associated OC, which led to burial in the sediment, and limited OC degradation. The degradability of the terrestrial OC in shelf sediment was also addressed in direct incubation studies. Molecular markers indicate marine OC (from primary production) was more readily degraded than terrestrial OC. Degradation was also faster in sediment from the East Siberian Sea, where the marine contribution was higher compared to the Laptev Sea. Although terrestrial carbon in the sediment was degraded slower, the terrestrial component also contributed to carbon dioxide formation in the incubations of marine sediment. These results contribute to our understanding of the marine fate of land-derived OC from the Siberian Arctic. The mobilization of topsoil OC is expected to grow in magnitude with climate warming and associated active layer deepening. This translocated topsoil OC component was found to be highly degraded, which suggests degradation during transport and a possible contribution to atmospheric carbon dioxide. Similarly, the yedoma ICD-OC (and or old mineral soil carbon) may become a stronger source with accelerated warming, but slow degradation may limit its impact on active carbon cycling in the Siberian Shelf Seas. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Manuscript.</p>
6

Soil Organic Matter Composition Impacts its Degradability and Association with Soil Minerals

Clemente, Joyce S. 11 December 2012 (has links)
Soil organic matter (OM) is a complex mixture of compounds, mainly derived from plants and microbes at various states of decay. It is part of the global carbon cycle and is important for maintaining soil quality. OM protection is mainly attributed to its association with minerals. However, clay minerals preferentially sorb specific OM structures, and clay sorption sites become saturated as OM concentrations increase. Therefore, it is important to examine how OM structures influence their association with soil minerals, and to characterize other protection mechanisms. Several techniques, which provide complementary information, were combined to investigate OM composition: Biomarker (lignin phenol, cutin-OH acid, and lipid) analysis, using gas chromatography/mass spectrometry; solid-state 13C nuclear magnetic resonance (NMR) spectroscopy; and an emerging method, solution-state 1H NMR spectroscopy. OM composition of sand-, silt-, clay-size, and light fractions of Canadian soils were compared. It was found that microbial-derived and aliphatic structures accumulated in clay-size fractions, and lignin phenols in silt-size fractions may be protected from further oxidation. Therefore, OM protection through association with minerals may be structure-specific. OM in soils amended with maize leaves, stems, and roots from a biodegradation study were also examined. Over time, lignin phenol composition, and oxidation; and aliphatic structure contribution changed less in soils amended with leaves compared to soils amended with stems and roots. Compared to soils amended with leaves and stems, amendment with roots may have promoted the more efficient formation of microbial-derived OM. Therefore, plant chemistry influenced soil OM turnover. Synthetic OM-clay complexes and soil mineral fractions were used to investigate lignin protection from chemical oxidation. Coating with dodecanoic acid protected lignin from chemical oxidation, and overlying vegetation determined the relative resistance of lignin phenols in clay-size fractions from chemical oxidation. Therefore, additional protection from chemical oxidation may be attributed to OM composition and interactions between OM structures sorbed to clay minerals. Overall, these studies suggest that while association with minerals is important, OM turnover is also influenced by vegetation, and protection through association with clay minerals was modified by OM structure composition. As well, OM-OM interaction is a potential mechanism that protects soil OM from degradation.
7

Soil Organic Matter Composition Impacts its Degradability and Association with Soil Minerals

Clemente, Joyce S. 11 December 2012 (has links)
Soil organic matter (OM) is a complex mixture of compounds, mainly derived from plants and microbes at various states of decay. It is part of the global carbon cycle and is important for maintaining soil quality. OM protection is mainly attributed to its association with minerals. However, clay minerals preferentially sorb specific OM structures, and clay sorption sites become saturated as OM concentrations increase. Therefore, it is important to examine how OM structures influence their association with soil minerals, and to characterize other protection mechanisms. Several techniques, which provide complementary information, were combined to investigate OM composition: Biomarker (lignin phenol, cutin-OH acid, and lipid) analysis, using gas chromatography/mass spectrometry; solid-state 13C nuclear magnetic resonance (NMR) spectroscopy; and an emerging method, solution-state 1H NMR spectroscopy. OM composition of sand-, silt-, clay-size, and light fractions of Canadian soils were compared. It was found that microbial-derived and aliphatic structures accumulated in clay-size fractions, and lignin phenols in silt-size fractions may be protected from further oxidation. Therefore, OM protection through association with minerals may be structure-specific. OM in soils amended with maize leaves, stems, and roots from a biodegradation study were also examined. Over time, lignin phenol composition, and oxidation; and aliphatic structure contribution changed less in soils amended with leaves compared to soils amended with stems and roots. Compared to soils amended with leaves and stems, amendment with roots may have promoted the more efficient formation of microbial-derived OM. Therefore, plant chemistry influenced soil OM turnover. Synthetic OM-clay complexes and soil mineral fractions were used to investigate lignin protection from chemical oxidation. Coating with dodecanoic acid protected lignin from chemical oxidation, and overlying vegetation determined the relative resistance of lignin phenols in clay-size fractions from chemical oxidation. Therefore, additional protection from chemical oxidation may be attributed to OM composition and interactions between OM structures sorbed to clay minerals. Overall, these studies suggest that while association with minerals is important, OM turnover is also influenced by vegetation, and protection through association with clay minerals was modified by OM structure composition. As well, OM-OM interaction is a potential mechanism that protects soil OM from degradation.

Page generated in 0.05 seconds