221 |
Isolation of pure cassava linamarin as an anti cancer agentIdibie, Christopher Avwoghokoghene 03 April 2008 (has links)
ABSTRACT
Cassava is a known source of linamarin, but difficulties associated with its isolation have
prevented it from being exploited as a source. A batch adsorption process using activated
carbon at the appropriate contact time proved successful in its isolation with ultrafiltration
playing a pivotal role in the purification process. Result revealed that optimum purification
was obtained with increasing amount of crude cassava extract (CCE) purified. 60g of CCE
took 32 mins, 80 g, 34 mins while 100 g took 36 mins of contact time, where 1.7 g, 2.0 g and
2.5 g of purified product were obtained, respectively. The purification process in batch mode
was also carried out at different temperatures ranging from 25 to 65oC. Results showed that
purification increases with increase in temperature. In a bid to ascertain the moles of
linamarin adsorbed per pore volume of activated carbon used, the composite isotherm was
found to represent the measured adsorption data quite well. The adsorption of linamarin was
used to study the goodness of fit criteria (R2) for the entire process. Results showed that R2
value was best with decreasing amount of CCE purified (R2=1 for 60 g) at the temperature of
45oC. Compound elucidation of purified product by Picrate paper test, IR and 1HNMR
confirmed the structure of linamarin. Cytotoxic effects of linamarin on MCF-7, HT-29, and
HL-60 cells were determined using the 3 - (4, 5 – dimethylthiazol-2-yl) – 2, 5 –
diphenyltetrazolium bromide (MTT) assay. Cytotoxic effects were significantly increased in
the presence of linamarase, which catalysed the hydrolysis of linamarin to hydrogen cyanide.
A 10–fold decrease in the IC50 values obtained for linamarin or crude extract in the presence
of linamarase was determined for HL-60 cells. This study thus describes a method for the
isolation and purification of linamarin from cassava, as well as the potential of this
compound as an anticancer agent.
|
222 |
Mathematical considerations of a two-conductor electrical transmission lineGalloway, Richard T. Unknown Date (has links)
No description available.
|
223 |
Digitally-controlled programmable delay line for TV signal.January 1974 (has links)
Thesis (M.Sc.)--Chinese University of Hong Kong. / Bibliography: leaves 84-86.
|
224 |
Proteomic studies on anti-proliferating activities of adenosine and cordycepin in human cancer cell lines.January 2004 (has links)
Tam Wai-Kwan Karen. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (leaves 109-128). / Abstracts in English and Chinese. / Thesis committee --- p.i / Statement --- p.ii / Abstract --- p.iii / Acknowledgements --- p.vi / Abbreviations --- p.vii / Table of Contents --- p.ix / List of Tables --- p.xii / List of Figures --- p.xiv / Chapter 1. --- Introduction --- p.1 / Chapter 2. --- Literature Review --- p.2 / Chapter 2.1 --- Introduction of Cordyceps --- p.2 / Chapter 2.2 --- Pharmacological functions of Cordyceps --- p.3 / Chapter 2.2.1 --- Functions in respiratory system --- p.3 / Chapter 2.2.2 --- Functions in renal system --- p.7 / Chapter 2.2.3 --- Functions in hepatic system --- p.8 / Chapter 2.2.4 --- Functions in cardiovascular system --- p.9 / Chapter 2.2.5 --- Functions in endocrine and steroid system --- p.10 / Chapter 2.2.6 --- Functions in the immune system --- p.11 / Chapter 2.2.7 --- Functions in nervous system --- p.15 / Chapter 2.2.8 --- Controls in glucose metabolism --- p.15 / Chapter 2.2.9 --- Anti-oxidation activity --- p.16 / Chapter 2.2.10 --- Anti-tumor activity --- p.18 / Chapter 2.3 --- Active ingredients of Cordyceps and their related biological activities --- p.20 / Chapter 2.3.1 --- Polysaccharides --- p.20 / Chapter 2.3.2 --- Nucleosides --- p.21 / Chapter 2.3.2.1 --- Adenosine --- p.21 / Chapter 2.3.2.2 --- Cordycepin --- p.24 / Chapter 2.4 --- Proteomic tools in studies of the change in protein expression --- p.25 / Chapter 2.4.1 --- Two-dimensional electrophoresis --- p.27 / Chapter 2.4.2 --- Mass Spectrometry --- p.28 / Chapter 3. --- Methods and Materials --- p.30 / Chapter 3.1 --- Cell lines and culture conditions --- p.30 / Chapter 3.2 --- Trypan blue exclusion method --- p.30 / Chapter 3.3 --- Cell counting --- p.31 / Chapter 3.4 --- Anti-proliferation assay --- p.31 / Chapter 3.5 --- Anti-proliferation assay of normal cell line --- p.32 / Chapter 3.6 --- Determination of ic50 --- p.33 / Chapter 3.7 --- Sample preparation for proteins studies --- p.33 / Chapter 3.8 --- Protein quantitation --- p.34 / Chapter 3.9 --- Gel electrophoresis --- p.36 / Chapter 3.10 --- Image analysis --- p.37 / Chapter 3.11 --- In-gel digestion and MALDI-ToF MS --- p.37 / Chapter 3.12 --- Statistical Analysis --- p.39 / Chapter 3.13 --- Chemicals --- p.39 / Chapter 4. --- Results --- p.41 / Chapter 4.1 --- MTT assay --- p.41 / Chapter 4.1.1 --- The anti-proliferating activity of adenosine against cancer cell lines (HepG2 and SV7tert) and normal cell line (Hs68) --- p.41 / Chapter 4.1.2 --- The anti-proliferating activity of cordycepin against cancer cell lines (HepG2 and SV7tert) and normal cell line (Hs68) --- p.42 / Chapter 4.1.3 --- The anti-proliferation effects of adenosine and cordycepin --- p.42 / Chapter 4.2 --- Changes in protein expression --- p.50 / Chapter 4.2.1 --- "Corresponding drug treatment of cell lines (HepG2, SV7tert and Hs68)" --- p.50 / Chapter 4.2.2 --- "Comparison of protein profiles from cells (HepG2, SV7tert or Hs68) under the normal and drug treated (with either adenosine or cordycepin) conditions" --- p.51 / Chapter 4.2.2.1 --- HepG2 study --- p.51 / Chapter 4.2.2.2 --- SV7tert study --- p.52 / Chapter 4.2.2.3 --- Hs68 study --- p.52 / Chapter 4.2.3 --- Protein identification --- p.53 / Chapter 4.2.3.1 --- HepG2 cell line --- p.53 / Chapter 4.2.3.2 --- HepG2-changes in protein expressions after adenosine treatment --- p.54 / Chapter 4.2.3.3 --- HepG2-changes in protein expressions after cordycepin treatment --- p.54 / Chapter 4.2.3.4 --- SV7tert cell line --- p.54 / Chapter 4.2.3.5 --- SV7tert-changes in protein expressions after cordycepin treatment --- p.55 / Chapter 4.2.3.6 --- Hs68 cell line --- p.55 / Chapter 4.2.3.7 --- Hs68-changes in protein expressions after cordycepin treatment --- p.56 / Chapter 5. --- Discussion --- p.89 / Chapter 5.1 --- anti-proliferation assays --- p.89 / Chapter 5.2 --- changes in protein expression: --- p.90 / Chapter 5.2.1 --- Protein alterations in HepG2 --- p.91 / Chapter 5.2.1.1 --- Changes in protein expression (membrane protein and transport: Trimethyllysine hydroxylase) --- p.91 / Chapter 5.2.1.2 --- Changes in protein expression (protein synthesis and folding: carboxypeptidase E) --- p.92 / Chapter 5.2.1.3 --- Changes in protein expression (membrane proteins and transport: calumenin and electron transfer flavoproteins) --- p.93 / Chapter 5.2.2 --- Protein alterations in SV7tert --- p.94 / Chapter 5.2.2.1 --- Changes in protein expression (protein synthesis and folding: BiP(GRP78)) --- p.94 / Chapter 5.2.2.2 --- Changes in protein expression (cell defense and tolerance: Hsp60 (chaperonin); TANK binding kinase-1) --- p.96 / Chapter 5.2.2.3 --- Changes in protein expression (metabolism: prolyl 4-hydroxylase; aldolase A; glyceraldehyde-3-phosphate dehydrogenase) --- p.97 / Chapter 5.2.2.4 --- Changes in protein expression (cell growth and division: βII tubulin; HnRNP Al) --- p.100 / Chapter 5.2.3 --- Protein alterations in Hs68 --- p.101 / Chapter 5.2.3.1 --- Changes in protein expression (metabolism: triosephosphate isomerse 1) --- p.101 / Chapter 6. --- Discussion --- p.103 / Chapter 6.1 --- The antiproliferating activities of adenosine and cordycepin --- p.103 / Chapter 6.2 --- "Effects of adenosine and cordycepin on the changes in protein expressions in HepG2, SV7tert and Hs68" --- p.104 / Chapter 6.3 --- Problems and improvements in two-dimensional gel electrophoresis --- p.105 / Chapter 7. --- Conclusion and future prospectives --- p.107 / References --- p.109
|
225 |
Application of Magnetic Resonance Spectroscopy in Tumor PathologyRekas, Agata January 1999 (has links)
No description available.
|
226 |
Search for young galactic supernova remnantsMisanovic, Zdenka January 2001 (has links)
A sample of 9 small-diameter radio sources has been selected from the Molonglo Galactic Plane Survey (MGPS) and observed with the Australia Telescope Compact Array (ATCA) in the radio recombination line (RRL) at 5 GHz, in a search for young Galactic SNRs. Since the RRL emission is an unambiguous indicator of a thermal source, this method has been used to eliminate HII regions from the selected sample. In addition, the IRAS and MSX infrared data and spectral index measurements have been combined with the RRL studies to distinguish thermal and non-thermal sources in the selected sample. One source (G282.8-1.2) is identified here as a possible new young Galactic supernova remnant, based on its relatively weak infrared emission, steep radio spectrum and possible x-ray emission. However, the ATCA data are inconclusive and further studies are needed to confirm this result. Radio recombination line emission (H107 alpha) has been detected in 3 of the selected sources, eliminating them from the sample of SNR candidates. In addition, the parameters of the RRL emission from the identified HII regions have been used to estimate their properties. The RRL data are inconclusive for the remaining low brightness, extended sources in the sample. However, some of these sources are likely to be thermal HII regions according to the infrared and spectral index data. The selected method for distinguishing thermal and non-thermal Galactic radio sources seems promising. The selected ATCA configuration was appropriate for imaging relatively bright, compact sources, but a slightly modified observing technique is needed to successfully image low surface brightness, extended sources.
|
227 |
A mathematical model for the long-term planning of a telephone networkBruyn, Stewart James January 1977 (has links)
69 leaves : tables ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Applied Mathematics, 1979
|
228 |
Analysis of Microstrip Lines on Substrates Composed of Several Dielectric Layers under the Application of the Discrete Mode MatchingSotomayor Polar, Manuel Gustavo January 2008 (has links)
<p><p>Microstrip structures became very attractive with the development of cost-effective dielectric materials. Among several techniques suitable to the analysis of such structures, the discrete mode matching method (DMM) is a full-wave approach that allows a fast solution to Helmholz equation. Combined with a full-wave equivalent circuit, the DMM allows fast and accurate analysis of microstrips lines on multilayered substrates.</p><p> </p><p>The knowledge of properties like dispersion and electromagnetic fields is essential in the implementation of such transmission lines. For this objective a MATLAB computer code was developed based on the discrete mode matching method (DMM) to perform this analysis.</p><p> </p><p>The principal parameter for the analysis is the utilization of different dielectric profiles with the aim of a reduction in the dispersion in comparison with one-layer cylindrical microstrip line, showing a reduction of almost 50%. The analysis also includes current density distribution and electromagnetic fields representation. Finally, the data is compared with Ansoft HFSS to validate the results.</p></p> / The German Aerospace Center has rights over the thesis work
|
229 |
Analysis and applications of multiple coupled line structures in an inhomogeneous mediumChin, Youn Kang 21 May 1982 (has links)
The general expressions for finding the network functions, e.g.,
the immittance and the scattering parameters, of a general, uniformly
coupled n-line structure in an inhomogeneous medium are derived in
terms of the normal mode parameters of the system. These are used to
compute or to derive the explicit expressions for the elements of the
immittance matrix in terms of normal mode parameters.
The scattering parameters of a general non-symmetrical directional
coupler with arbitrary terminations are derived in terms of the
known scattering parameters with a specified set of terminations such
as characteristic non-mode converting terminations. The formulation
is quite general and can be applied to various coupled guided wave
systems, including coupled microstrip lines, slot lines, comb lines,
dielectric waveguides and various other uniformly coupled transmission
systems.
The results obtained are used to present the procedure to determine
the optimum terminations for directional couplers and sensitivity
of various multiports, including couplers, to changes in terminations.
It is shown that the coupler performance can be optimized in
terms of the terminating impedances.
The analysis and design procedure for both symmetrical and nonsymmetrical
four-port coupled structures consisting of the symmetrical
three lines in an inhomogeneous medium such as microstrips are presented.
Tables and charts for the design of three-line structure are
based on the closed form expressions for the immittance parameters.
The analysis and design procedure for open-circuited interdigital
multiple coupled microstrip line structures for applications as wideband
DC blocks and filters are also presented. As in the case of the
other microstrip structures, the initial design is based on the TEM
assumption and the final geometry is then determined by the exact computation
of the frequency response of the two ports. For larger numbers
of lines, the design is based on the equivalent even- and odd-mode
parameters of the n-line system. For this case, the TEM design
equations, derived in terms of even- and odd-mode impedances of a
pair of lines, can be translated into a physical configuration by
using published results on coupled lines. / Graduation date: 1983
|
230 |
Bus arrival time prediction using stochastic time series and Markov chainsRajbhandari, Rajat, January 2005 (has links)
Thesis (Ph. D.)--New Jersey Institute of Technology, 2005. / Includes bibliographical references (p. 136-140). Also available online via the New Jersey Institute of Technology library website (http://www.library.njit.edu/etd/).
|
Page generated in 0.0446 seconds