21 |
Membrane properties of cholesterol analogs with an unbranched aliphatic side chainMeyer, Thomas, Baek, Dong Jae, Bittman, Robert, Haralampiev, Ivan, Müller, Peter, Herrmann, Andreas, Huster, Daniel, Scheidt, Holger A. 07 December 2015 (has links) (PDF)
The interactions between cholesterol and other membrane molecules determine important membrane properties. It was shown that even small changes in the molecular structure of cholesterol have a crucial influence on these interactions. We recently reported that in addition to alterations in the tetracyclic ring structure, the iso-branched side chain of cholesterol also has a significant impact on membrane properties (Scheidt H. et al. 2013 Angew. Chem. Int. Ed. Engl. 52, 12848-12851). Here we used synthetic cholesterol analogs to investigate the influence of an unbranched aliphatic side chain of different length. The 2H NMR order parameter of the phospholipid chains and therefore the molecular packing of the phospholipid molecules shows a significant dependence on the sterol’s alkyl side chain length, while , membrane permeation studied by a dithionite ion permeation assay and lateral diffusion measured by 1H MAS pulsed field gradient NMR are less influenced. To achieve the same molecular packing effect similar to that of an iso-branched aliphatic side chain, a longer unbranched side chain (n-dodecyl instead of n-octyl) at C17 of cholesterol is required. Obviously, sterols having a branched iso- alkyl chain with two terminal methyl groups exhibit altered cholesterol-phospholipid-interactions compared to analogous molecules with a straight unbranched chain.
|
22 |
Diffusion and Conformational Dynamics of Semiflexible Macromolecules and Supramolecular Assemblies on Lipid MembranesHerold, Christoph 11 December 2012 (has links) (PDF)
Understanding the interaction of polyelectrolytes with oppositely charged lipid membranes is an important issue of soft matter physics, which provides an insight into mechanisms of interactions between biological macromolecules and cell membranes. Despite the fact that many (bio)macromolecules and filamentous supramolecular assemblies show semiflexible behavior, prior to this work very little was known about the conformational dynamics and Brownian motion of semiflexible particles attached to freestanding lipid membranes. In order to address these issues, diffusion and conformational dynamics of semiflexible DNA molecules and filamentous fd-virus particles electrostatically adsorbed to cationic freestanding lipid membranes were studied on the single particle level by means of optical wide-field fluorescence microscopy. Supergiant unilamellar vesicles (SGUVs) with diameters larger than 100 m represent a perfect model of a freestanding membrane. In this work, a method was developed that enabled the reliable and efficient electroformation of cationic SGUVs on ITO-coated coverslips. The utilization of SGUVs as model freestanding lipid bilayers allowed for determination of the previously unknown surface viscosity of DOPC/DOTAP membranes. In particular, the analysis of the translational diffusion coefficients of small (10, 20, 50 nm) membrane-attached anionic polystyrene beads has shown that the surface viscosity of DOPC/DOTAP membranes with CDOTAP = 1–7 mol% is independent of the DOTAP concentration and equals η = (5.9 ± 0.2) × 10−10 Pa s m.
The fluorescence video-microscopy investigation of single DNA molecules attached to cationic SGUVs revealed a previously unreported conformational transition of a membrane-bound DNA molecule from a 2D random coil, the original conformation in which DNA attaches to the membrane, to a compact globule. This membrane-mediated DNA condensation is favored at high cationic lipid concentrations in the membrane and long DNA contour lengths. The DNA compaction rate in the coil–globule transition is 124 ± 46 kbp/s, and the resulting DNA globule sizes were found to be 250–350 nm at DOPC membranes containing 1 mol% DOTAP and 130–200 nm for 7 mol% DOTAP, indicating a stronger compaction for higher charge densities in the membrane. Additional experiments with freestanding cationic membranes in the gel state and supported cationic lipid membranes with gel–fluid coexistence suggest that the DNA collapse on a freestanding fluid cationic membrane may be initiated by a local lipid segregation in the membrane and is accompanied by local membrane deformations, which eventually stabilize the compact DNA globule.
Furthermore, in this work single molecule studies of random-coil DNA molecules and filamentous fd-virus particles on a freestanding cationic lipid bilayer with a low charge density were carried out. The experiments revealed that these particles can be described as semiflexible chains in 2D. Taken together, DNA molecules and fd-virus particles cover a broad range of the ratio of contour length and persistence length from 0.4 to 82. The results of this work demonstrate that the mobility of such membrane-attached semiflexible particles is strongly affected by hydrodynamics in the lipid membrane and the surrounding bulk fluid, and can in essence be described using a hydrodynamics-based theory for a disk-shaped solid membrane inclusion with a characteristic size approximately equal to the radii of gyration of the particles.
|
23 |
Hétérogénéité des membranes lipidiques et propriétés mécaniques : des bicouches modèles aux membranes des globules gras du lait / Heterogeneity of biological membranes and mechanical properties : lipid bilayers model of the milk fat globules membranesEtthakafy, Oumaima 25 October 2017 (has links)
Les globules gras du lait sont entourés d’une membrane biologique extrêmement complexe en composition et en structure, appelée MFGM (milk fat globule membrane). L’investigation de cette membrane, in situ dans le lait, par microscopie confocale nous suggère que les lipides polaires à haute température de transition de phase (Tm) forment des domaines en phase gel ou liquide ordonné, dispersés dans une phase continue fluide. Sur la base de cette observation, ce projet vise à comprendre en quoi la composition en lipides polaires laitiers et leur état de phase peuvent moduler les propriétés élastiques de la MFGM, en vue d’une meilleure maîtrise de la stabilité des globules gras en industrie laitière.L’hétérogénéité mécanique générée par la coexistence de différents types de phase a ainsi été caractérisée par spectroscopie de force AFM en utilisant des bicouches de lipides modèles de la membrane réelle, à basse (T<Tm) et haute températures (T>Tm). Pour analyser finement les déterminants de l’élasticité de la membrane, et tenir compte de la courbure, une étude approfondie des effets de l’état de phase et de la composition hétérogène en lipides polaires a été entreprise par spectroscopie de force atomique, en complément d’une analyse structurale par microscopie électronique ou diffraction des rayons X. Nous y avons montré, en particulier, que la présence de molécules de longueur de chaîne acyles et d’insaturation variables rend les membranes de sphingomyéline de lait en phase gel moins rigides qu’attendu, bien que significativement plus rigide qu’une membrane fluide. Cette approc / The milk fat globules are enveloped by a biological membrane, called MFGM, of highly complex composition and structure. Investigation of this membrane, in situ in milk, using confocal microscopy suggested that polar lipids with high transition temperature (Tm) form domains in gel or liquid-ordered phase, dispersed in a continuous fluid phase. From this observation, the aim of this project was to understand how the composition and organization of dairy polar lipids can modulate the elastic properties of the MFGM, in order to better control stability of the fat globules in the dairy industry. The mechanical heterogeneity created by the coexistence of phases was then characterized by AFM force spectroscopy using lipid bilayers models at low (T<Tm) and high temperatures (T>Tm).In order to closely analyze the factors that direct membrane elasticity, force spectroscopy measurements were undertaken on curved liposome membranes, in combination with structural characterization by TEM and SAXS. We showed, in particular, that heterogeneity in acyl chain length and unsaturation made gel-phase milk sphingomyelin membranes less rigid than expected, although more rigid than a fluid phase membrane. This approach was finally applied to native milk fat globules, where mechanical heterogeneity was visible. However, elasticity values were somewhat different from those calculated on model systems, probably because of the presence of membrane proteins.
|
24 |
Rational design of DNA-based lipid membrane poresGöpfrich, Kerstin January 2017 (has links)
DNA nanotechnology has revolutionised our capability to shape and control three-dimensional structures at sub-nanometre length scales. In this thesis, we use DNA to build synthetic membrane-inserting channels. Porphyrin and cholesterol tags serve as membrane anchors to facilitate insertion into the lipid membrane. With atomic force microscopy, confocal imaging and ionic current recordings we characterise our DNA nanochannels that mimic their natural protein-based counterparts in form and function. We find that they exhibit voltage-dependent conductance states. Amongst other architectures, we create the largest man-made pore in a lipid membrane to date approaching the electrical diameter of the nuclear pore complex. Pushing the boundaries on the other end of the spectrum, we demonstrate the ultimately smallest DNA membrane pore made from a single membrane-spanning DNA duplex. Thereby, we proof that ion conduction across lipid membranes does not always require a physical channel. With experiments and MD simulations we show that ions flow through a toroidal pore emerging at the DNA-lipid interface around the duplex. Our DNA pores spanning two orders of magnitude in conductance and molecular weight showcase the rational design of synthetic channels inspired by the diversity of nature - from ion channels to porins.
|
25 |
Isolement et caractérisation structurale de lipides naturels deutérés et d'acides gras issus de micro-organismes / Isolation and structural characterization of natural deuterated lipids and oils from microorganismsDelhom, Robin 20 December 2017 (has links)
La formation et l'étude structurale de bicouches planes formées à partir de lipides synthétiques et d'extraits lipidiques naturels sont décrites. Les bicouches ont été utilisées comme modèles membranaires pour étudier et quantifier les mécanismes d’action du médicament antifongique Amphotéricine B, principalement par réflectométrie des neutrons. Différents modèles membranaires de complexités croissantes, qui intègrent de l’ergostérol ou du cholestérol afin d’imiter respectivement des systèmes fongiques ou mammifères, ont été étudiés. L'extraction, l'analyse chimique et la préparation des mélanges de lipides hydrogénés et deutérés issus de levures sont présentés en même temps que l'optimisation du procédé de déposition sur des substrats de silicium, initialement contrôlés avec une microbalance à quartz et mesure de la dissipation, qui permet d'accéder à des modèles de membranes naturelles pertinentes pour les techniques de diffusion neutronique. Les effets de la deutération sur la composition lipidique de la levure méthylotrophe Pichia pastoris ou de la levure pathogène Candida glabrata, sont détaillés et utiles pour comprendre la modulation des lipides obtenus de ces micro-organismes. Les modèles membranaires basés sur le lipide synthétique 1-palmitoyl-2-oléoyl-sn-glycéro-3-phosphocholine ont d'abord été caractérisés et comparés à ceux formés des phospholipides ou des lipides totaux extraits des levures, principalement par réflectométrie des neutrons, mais aussi par diffraction de membrane. Enfin, la relation entre la composition lipidique et les réponses des modèles à l'Amphotéricine B ont été étudiées et quantifiées. Bien que différents comportements soient observés pour les systèmes fongiques et mammifères, les différents degrés de complexité des modèles utilisés a montré une incidence sur les résultats et l'interprétation des mécanismes impliqués lors de l'interaction du médicament avec les membranes. Les différences observées entre les systèmes lipidiques synthétiques et naturels démontrent la pertinence des modèles membranaires nouvellement développés à partir des lipides extraits de biomasse. / The formation and structural investigation of planar bilayers from synthetic lipids and natural extracts is described. The bilayers were used as model membrane systems for the investigation and quantification of the molecular mechanisms of the membrane-binding antifungal drug Amphotericin B, primarily by neutron reflectometry. Different membrane models of increasing complexity were investigated, with ergosterol or cholesterol included to mimic fungal and mammalian cell membranes, respectively. The extraction, chemical analysis and preparation of hydrogenous and deuterated lipid mixtures from yeasts are presented together with the optimization of the deposition process of supported lipid bilayers on silicon substrates using Quartz Crystal Microbalance with Dissipation monitoring to create relevant natural model membranes for the neutron scattering experiments. The effects of deuteration on the lipid composition in two different yeasts, the methylotrophic Pichia pastoris and the pathogenic Candida glabrata are detailed and is shown to be useful for understanding the modulation of the lipids accessible from these microorganisms. Model membranes from the synthetic lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine were initially characterized and compared to those formed by the phospholipids or the total lipids extracted from the yeasts, mainly using neutron reflectometry but also membrane diffraction. Finally, the relationship between the lipid composition and the response to Amphotericin B was investigated. Although different behavior of the drug is observed in fungal and mammal membrane mimics, the composition and degree of complexity of the model systems employed were shown to affect the findings and the interpretation of the mechanisms involved in the interaction of the drug with the membranes. The differences found between synthetic and natural lipid systems demonstrate the relevance of the newly developed model membranes from lipids extracted from biomass.
|
26 |
Lipid membrane alteration under exposure to alpha-cyclodextrins and pH-responsive pseudopeptide polymers / Altération de membranes lipides exposées à des cyclodextrines α et à des polymères pseudopeptides sensibles au pHKluzek, Monika 10 October 2017 (has links)
Le développement de nanotransporteurs basés sur des lipides, des polymères et des nanoparticules avec des propriétés «sur mesure» pour augmenter l’efficacité de médicaments, fait l’objet de recherches intensives. Toutefois, la physico-chimie subtile des intéractions polymères-lipides and nanoparticules-lipides présente encore de larges domaines mal compris et de nombreuses questions sans réponse. Ce projet de recherche doctoral utilise des techniques de visualisation (Cryo-MET, LSCM), et de caractérisation (ITC, DSC, SAXS, SANS, QCM-D) avancées pour obtenir des informations nouvelles sur les mécanismes d’interaction entre des Cyclodextrines-α d’autre part, des polymères sensibles au pH d’autre part, et des bicouches modèle de DOPC. La forte influence de ces deux composés sur ces systèmes modèle élucide certains aspects relatifs à la toxicité vis-à-vis des membranes biologiques et suggère de nouvelles approches pour des applications pharmaceutiques. / The primary goal of nanomedicine is to improve clinical outcomes. To this end, the development of nanocarriers based on lipids, polymers and nanoparticles with tailor-made properties that enhance the in vivo potency of drugs is a subject of intense research. However, the subtle physical-chemistry of the polymer-lipid and nanoparticle-lipid interactions still present many poorly understood fields of investigation as well as unanswered questions. This doctoral research project utilizes state-of-the-art visualization (Cryo-TEM, LSCM) and characterization (ITC, DSC, SAXS, SANS, QCM-D) techniques to gain novel insights into the interaction between α-Cyclodextrins in the first hand, a pH-responsive polymer in the other hand, and model DOPC bilayers. The strong influence of both compounds on these model systems elucidate some aspects regarding biological membrane toxicity and suggests novel strategies for pharmaceutical applications.
|
27 |
Diffusion and Conformational Dynamics of Semiflexible Macromolecules and Supramolecular Assemblies on Lipid MembranesHerold, Christoph 07 November 2012 (has links)
Understanding the interaction of polyelectrolytes with oppositely charged lipid membranes is an important issue of soft matter physics, which provides an insight into mechanisms of interactions between biological macromolecules and cell membranes. Despite the fact that many (bio)macromolecules and filamentous supramolecular assemblies show semiflexible behavior, prior to this work very little was known about the conformational dynamics and Brownian motion of semiflexible particles attached to freestanding lipid membranes. In order to address these issues, diffusion and conformational dynamics of semiflexible DNA molecules and filamentous fd-virus particles electrostatically adsorbed to cationic freestanding lipid membranes were studied on the single particle level by means of optical wide-field fluorescence microscopy. Supergiant unilamellar vesicles (SGUVs) with diameters larger than 100 m represent a perfect model of a freestanding membrane. In this work, a method was developed that enabled the reliable and efficient electroformation of cationic SGUVs on ITO-coated coverslips. The utilization of SGUVs as model freestanding lipid bilayers allowed for determination of the previously unknown surface viscosity of DOPC/DOTAP membranes. In particular, the analysis of the translational diffusion coefficients of small (10, 20, 50 nm) membrane-attached anionic polystyrene beads has shown that the surface viscosity of DOPC/DOTAP membranes with CDOTAP = 1–7 mol% is independent of the DOTAP concentration and equals η = (5.9 ± 0.2) × 10−10 Pa s m.
The fluorescence video-microscopy investigation of single DNA molecules attached to cationic SGUVs revealed a previously unreported conformational transition of a membrane-bound DNA molecule from a 2D random coil, the original conformation in which DNA attaches to the membrane, to a compact globule. This membrane-mediated DNA condensation is favored at high cationic lipid concentrations in the membrane and long DNA contour lengths. The DNA compaction rate in the coil–globule transition is 124 ± 46 kbp/s, and the resulting DNA globule sizes were found to be 250–350 nm at DOPC membranes containing 1 mol% DOTAP and 130–200 nm for 7 mol% DOTAP, indicating a stronger compaction for higher charge densities in the membrane. Additional experiments with freestanding cationic membranes in the gel state and supported cationic lipid membranes with gel–fluid coexistence suggest that the DNA collapse on a freestanding fluid cationic membrane may be initiated by a local lipid segregation in the membrane and is accompanied by local membrane deformations, which eventually stabilize the compact DNA globule.
Furthermore, in this work single molecule studies of random-coil DNA molecules and filamentous fd-virus particles on a freestanding cationic lipid bilayer with a low charge density were carried out. The experiments revealed that these particles can be described as semiflexible chains in 2D. Taken together, DNA molecules and fd-virus particles cover a broad range of the ratio of contour length and persistence length from 0.4 to 82. The results of this work demonstrate that the mobility of such membrane-attached semiflexible particles is strongly affected by hydrodynamics in the lipid membrane and the surrounding bulk fluid, and can in essence be described using a hydrodynamics-based theory for a disk-shaped solid membrane inclusion with a characteristic size approximately equal to the radii of gyration of the particles.
|
28 |
Dynamique non-linéaire et hors-équilibre des membranes lipidiques confinées / Nonlinear and out-of-equilibrium dynamics of confined lipid membranesLe Goff, Thomas 03 December 2015 (has links)
Les membranes lipidiques auto-assemblées présentent une riche phénoménologie de comportements dynamiques, et sont présentes dans de nombreux systèmes biologiques. Au cours de cette thèse nous avons étudié la dynamique de ces membranes dans des situations de fort confinement par des modèles théoriques simples. Nous nous sommes focalisés sur le cas d'un confinement entre deux murs, en présence d'un potentiel double-puits menant à deux états possibles d'adhésion (sur le mur du haut, ou sur celui du bas). A l'aide de modèles de lubrification, nous avons obtenu une équation différentielle nonlinéaire et nonlocale décrivant l'évolution de la morphologie de la membrane. Nous avons surtout étudié son comportement dans les systèmes bidimensionnels, où la membrane est un objet unidimensionnel. Dans ce cadre, nous avons montré que la rigidité de courbure de la membrane mène à une dynamique différente de la dynamique de mûrissement obtenue habituellement en présence d'une tension de surface. En effet, la membrane atteint rapidement une configuration gelée, qui dépend des conditions initiales. L'arrêt de la dynamique la conséquence d'une interaction oscillante entre les kinks –définis ici comme parois de domaines dans les systèmes unidimensionnels. L'organisation spatiale de la configuration finale peut être contrôlée par la perméabilité des murs : par exemple, si la membrane est initialement plane, et à mi-chemin entre les deux murs, des morphologies désordonnées sont obtenues pour des murs perméables, alors qu'un ordre à longue distance est obtenu dans le cas imperméable. Nous avons de plus montré que différents ingrédients physiques tels qu'une tension de membrane, l'asymétrie du potentiel d'adhésion, ou le bruit thermique sont susceptibles de restaurer le mûrissement, généralement au dessus d'un seul fini. Inspirés par la biolubrification, nous avons par ailleurs étudié l'influence d'un cisaillement imposé par le mouvement des murs. Les simulations montrent une dynamique riche de plusieurs régimes, qui influence la friction effective entre les murs. Pour les faibles taux de cisaillements, nous obtenons une dynamique complexe et chaotique qui engendre du mûrissement, et mène à un comportement thixotrope, où la force décroît avec le temps. Pour des taux de cisaillement modérés et fort, nous obtenons respectivement des solutions stationnaires périodiques ou du chaos spatiotemprel. Dans ces deux régimes, le système est rhéo-fluidifiant / Self-assembled lipid membranes exhibit a rich variety of dynamical behaviors, and are ubiquitous in biology. In this thesis, we report on the study of dynamics of membranes in strong confinement, using simple theoretical models. We focus on the case of confinement between two walls, in the presence of a double-well potential leading to two possible states of adhesion (on the upper or the lower wall). Using a lubrication model, we obtained a nonlinear and nonlocal partial differential equation describing the evolution of the membrane morphology. We have mainly studied the twodimensional case, where the membrane is a one-dimensional object. Within this frame, we have shown that the membrane bending rigidity leads to dynamics that are different from the coarsening behavior obtained usually in the presence of surface tension. Indeed, the membrane reaches a frozen state, which depends on the initial conditions. The freezing of the dynamics is the consequence of the oscillatory interaction between kinks –here defined as domain walls in one-dimensional systems. The spatial organization of the final state can be controlled by the wall permeability : as an example, starting from a plane membrane half-way between the two walls, disordered configurations are obtained for very permeable walls, while long range order is obtained with impermeable walls. In addition, we have shown that different physical ingredients such as membrane tension, potential asymmetry, or thermal noise, can restore coarsening, usually above a finite threshold. Inspired by biolubrication, we have also studied the influence of shear imposed by the motion of the two confining walls. Simulations show a rich behavior with several regimes, which influence the effective friction between the walls. For weak shear rates, we obtain complex and chaotic dynamics, which induce coarsening, leading to a thixotropic behavior, where the force decreases with time. For moderate or large shear rates, we respectively obtain frozen periodic stationary solutions, or spatio-temporal chaos. In these two regimes, the system exhibits shear-thinning
|
29 |
Influence of lipid membrane environment on the kinetics of the cytochrome P450 reductase- cytochrome P450 3A4 enzyme system in nanodiscsLiu, Kang-Cheng January 2017 (has links)
The cytochrome P450 enzyme system is a multicomponent electron-transfer chain composed of a haem-containing monooxygenase cytochrome P450 (CYP) and one or more redox partners. Eukaryotic CYPs and their redox partner NADPH-dependent cytochrome P450 oxidoreductase (CPR) are involved in many biological processes. Each protein has one N- terminal membrane anchor domain for location within the endoplasmic reticulum (ER). In mammals, CYPs and CPR are especially abundant in liver cells, where they play important roles in the metabolism of steroids, fatty acids, and xenobiotic compounds including numerous drugs of pharmaceutical importance. Incorporation into lipid membranes is an important aspect of CYP and CPR function, influencing their kinetic properties and interactions. In this thesis, soluble nanometer-scale phospholipid bilayer membrane discs, "nanodiscs", were used as a reconstitution system to study the influence of lipid membrane composition on the activities of the abundant human CYP3A4 and human CPR. Both enzymes were expressed and purified from bacteria, and assembled into functionally active membrane-bound complexes in nanodiscs. Nanodisc assembly was assessed by a combination of native and denaturing gel electrophoresis, and a fluorimetric assay was developed to study CYP3A4 reaction kinetics using 7-benzyloxyquinoline as substrate. Kinetic properties were investigated with respect to different lipid membrane compositions: phosphatidyl choline; a synthetic lipid mixture resembling the ER; and natural lipids extracted from liver microsomes. Full activity of the CYP3A4 system, with electron transfer from NADPH via CPR, could only be reconstituted when both CYP3A4 and CPR were membrane-bound within the same nanodiscs. No activity was observed when CPR and CYP3A4 were each incorporated seperately into naodiscs then mixed together, or when soluble forms of CPR were mixed with pre-assembled CYP3A4-nanodiscs. Thus, assembly of the two proteins within the same membrane was shown to be essential for the function of the CPR-CYP3A4 electron transfer system. Comparison of the reaction kinetics in different membrane compositions revealed liver microsomal lipid to have an enhancing effect both on the activity of the assembled CPR-CYP3A4 nanodisc complex, and on the activity of CPR alone incorporated in nanodiscs, when compared either to the synthetic lipid mixture or to phosphatidyl choline alone. Thus, natural lipids appear to possess properties or include components important for the catalytic function of the CYP system, which are absent from synthetic lipid. Input of electrons, measured by NADPH consumption, exceeded product formation rate by the CPR-CYP3A4 complex in nanodiscs, indicating "leakage" in the electron flow, possibly due to uncoupling of the two enzymes. Uncoupling was shown to occur by developing a novel fluorimetric method using the dye MitSOX to detect superoxide production. The significance of this, and to what extent control of coupling could be a natural means of regulation of the CPR-CYP system, remains to be determined. Thus, phospholipid bilayer nanodiscs prove a powerful tool to enable detailed analysis of the reaction kinetics of membrane-reconstituted CPR-CYP systems, and to allow pertinent questions to be addressed concerning the integral significance of the membrane environment.
|
30 |
Entwicklung eines optischen markierungsfreien Ionenkanalsensor-ArraysZimmerer, Cordelia 24 October 2007 (has links) (PDF)
Ligandgesteuerte Ionenkanäle sind Membranproteine, die an der Weiterleitung von Reizen und an der Kommunikation zwischen Zellen beteiligt sind. Große Bedeutung besitzt die Messung der Aktivierung der Ionenkanäle beispielsweise in der Medizin (z.B. Ionenkanalerkrankungen), der Pharmazie (z.B. Medikamenten-Screening) und in der Bionanotechnologie (z.B. molekulare Schalter). In all diesen Gebieten besteht die Forderung nach hohen Probendurchsätzen bei sehr hohem Informationsgehalt. Etablierte elektrochemische Detektionsmethoden erfüllen diese Forderung nicht. Um dieses Defizit zu überwinden, wurde ein Ionenkanalsensor-Array mit optischer, paralleler Detektion entwickelt. Eine mikrostrukturierte Polymethyl(meth)acrylat (PMMA)-Schicht dient als Grundgerüst des Arrays. Über die Mikroporen, die nur wenige Mikrometer Durchmesser aufweisen, wird eine Lipidmembran gespannt, in die Ionenkanäle eingebaut werden. Wird der Ionenkanal aktiviert, strömen Ionen in die Mikroporen und führen zu einer messbaren Veränderung des Brechungsindexes. Mittels Oberflächenplasmonen-Resonanz Imaging lässt sich die Aktivierung der Ionenkanäle markierungsfrei und direkt bestimmen. Stabile, die Mikrostruktur überspannende Lipidmembranen wurden durch eine neu entwickelte Stempeltechnik und durch eine Oberflächenmodifikation der PMMA-Mikrostruktur erzielt. Für die Charakterisierung und den Funktionsnachweis des Sensoraufbaus wurden das infrarot-spektroskopische Imaging und die Fluoreszenzmikroskopie eingesetzt. Schließlich konnte gezeigt werden, dass eine Verbesserung der Empfindlichkeit durch das lokale Aufkonzentrieren der durch den Ionenkanal geströmten Metallionen am Porengrund mit oberflächengebundener 2-(Benzylsulfid)-18-Krone-6 möglich ist.
|
Page generated in 0.0838 seconds