• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 243
  • 156
  • 30
  • 21
  • 20
  • 9
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • Tagged with
  • 600
  • 151
  • 111
  • 99
  • 83
  • 70
  • 67
  • 56
  • 54
  • 47
  • 47
  • 46
  • 46
  • 43
  • 43
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Enhanced Microbial Respiration of Photodegraded Leaf Litter at High Relative Humidity is Explained by Relative Water Content Rather Than Vapor Uptake Rate or Carbon Quality

January 2019 (has links)
abstract: There is a growing consensus that photodegradation accelerates litter decomposition in drylands, but the mechanisms are not well understood. In a previous field study examining how exposure to solar radiation affects decomposition of 12 leaf litter types over 34 months in the Sonoran Desert, litter exposed to UV/blue wavebands of solar radiation decayed faster. The concentration of water-soluble compounds was higher in decayed litter than in new (recently senesced) litter, and higher in decayed litter exposed to solar radiation than other decayed litter. Microbial respiration of litter incubated in high relative humidity for 1 day was greater in decayed litter than new litter and greatest in decayed litter exposed to solar radiation. Respiration rates were strongly correlated with decay rates and water-soluble concentrations of litter. The objective of the current study was to determine why respiration rates were higher in decayed litter and why this effect was magnified in litter exposed to solar radiation. First, I evaluated whether photodegradation enhanced the quantity of dissolved organic carbon (DOC) in litter by comparing DOC concentrations of photodegraded litter to new litter. Second, I evaluated whether photodegradation increased the quality of DOC for microbial utilization by measuring respiration of leachates with equal DOC concentrations after applying them to a soil inoculum. I hypothesized that water vapor sorption may explain differences in respiration among litter age or sunlight exposure treatments. Therefore, I assessed water vapor sorption of litter over an 8-day incubation in high relative humidity. Water vapor sorption rates over 1 and 8 days were slower in decayed than new litter and not faster in photodegraded than other decayed litter. However, I found that 49-78% of the variation in respiration could be explained by the relative amount of water litter absorbed over 1 day compared to 8 days, a measure referred to as relative water content. Decayed and photodegraded litter had higher relative water content after 1 day because it had a lower water-holding capacity. Higher respiration rates of decayed and photodegraded litter were attributed to faster microbial activation due to greater relative water content of that litter. / Dissertation/Thesis / Masters Thesis Biology 2019
102

Impacts of leaf litter diversity and root resources on microorganisms and microarthropods (Acari, Collembola) during early stages of decomposition in tropical montane rainforest ecosystems

Sánchez Galindo, Laura Margarita 18 February 2021 (has links)
No description available.
103

Production and Biodegradation of Dissolved Carbon, Nitrogen and Phosphorous from Canadian Forest Floors

Turgeon, Julie January 2009 (has links)
No description available.
104

Production and biodegradation of dissolved carbon, nitrogen and phosphorus from Canadian forest floors

Turgeon, Julie. January 2008 (has links)
No description available.
105

Effects of Litter Reuse on Performance, Welfare, and the Microbiome of the Litter and Gastrointestinal Tract of Commercial Broiler Chickens

Cressman, Michael David 02 June 2014 (has links)
No description available.
106

Interactive Effects of Litter Quality and Invertebrates on Litter Decomposition Rates Across a Successional Gradient

Baroudi, Robby Hassan 14 July 2016 (has links)
No description available.
107

Nutrient Availability from Poultry Litter Co-Products

Middleton, Amanda Jo 03 August 2015 (has links)
Phosphorus (P) is a nutrient of concern in the Chesapeake Bay watershed due to nutrient imbalances in areas with confined animal feeding operations. By converting poultry litter to an ash via thermal conversion, nutrients are concentrated and are economical to ship out of nutrient surplus watersheds to nutrient deficient regions, such as the corn-belt. We initiated incubation and field studies on sandy loam soils to test P and potassium (K) availability from poultry litter ash (PLA). Four PLA products, derived from different sources using different combustion techniques, and 2 biochar products were characterized. Poultry litter (PL) co-products were compared to a no-fertilizer control and inorganic P (triple super phosphate; TSP) and inorganic K (muriate of potash; KCl) fertilizer at similar rates. In the incubation study, standard fertilizers (TSP and PL) had the greatest initial availability for P (55.50% TSP; 9.13% PL) and K (97.99% PL), respectively. The PL co-products varied in availabilities based on thermo-conversion system from 1.60- 8.63% for P to 8.14- 88.10% for K. One ash co-product (ASH4) produced similar availabilities to the industry standard fertilizers after 56 days. In conclusion, co-products from combustion thermo-conversion systems were found be superior to gasification and pyrolysis systems when the desire was to produce the most plant available P and K dense PL co-products. In the field studies, yield, Mehlich-I extractable soil nutrients, plant tissue and grain samples, and organic matter content was used to compare treatments. Poultry litter ash co-products were highly variable due to the thermo-conversion system and feedstock of formation. If all ideal combustion criteria are met, then PL co-products are feasible to use as fertilizer sources, but will need to be individually analyzed for nutrient content before making application recommendations. A greater amount of the co-products will have to be applied to meet the same nutrient availability of the standards due to their lower availability. Fresh PL tends to be the better fertilizer due to its added N content, which is lost in thermo-conversion systems and would have to be supplemented with the ash co-products. Biochars tend to be less available than their ash counter parts. More research using the water soluble availabilities instead of the total concentration nutrients of the co-products are needed to be able to identify stronger relationships with standard fertilizers. / Master of Science
108

Evaluating the effects of poultry litter amendments on Escherichia coli populations, virulence genes, and antimicrobial-resistance genes in poultry litter during a live grow-out.

Henson, Faith 10 May 2024 (has links) (PDF)
Poultry litter can harbor pathogenic bacteria, including avian pathogenic Escherichia coli (APEC). Applying litter amendments is one strategy to improve bird health and potentially reduce pathogens. Biochar and PLT were applied as litter amendments in a live bird trial to study their effects on E. coli populations, APEC virulence genes (VAG), and antimicrobial resistance (AMR) genes. Samples were collected at days 0, 17, 29, and 41 to enumerate E. coli and store bacterial isolates for antimicrobial-resistance gene analysis. Data analysis showed litter amendments did not significantly affect overall E. coli populations. Grow-out time impacted E. coli populations, with reductions occurring over time. Litter treatment had no impact on the prevalence of VAG or AMR. Time showed VAGs were absent at d 0 while AMR genes were prevalent at d 0. This indicates chicks may have been the source of VAG, while AMR genes were prevalent in used litter.
109

Understanding stream litter loading through watershed characteristics

Mallon, Elinor Reed 13 December 2024 (has links) (PDF)
Litter, whether river-based, marine, or terrestrial, is an ever-increasing environmental and economic issue. However, litter in freshwater environments is studied less than in marine environments. To better understand factors impacting stream-transported floating litter, seven watershed characteristics were assessed across a network of thirty litter collection devices. The research objective for this study was to quantify litter loading and assess watershed characteristics relative to litter loading. Of the various watershed characteristics in this study, land cover classification had the greatest impact on the amount of litter collected from the Litter Gitters followed by median household income. Results from this study can strengthen litter collection device placement and best management practices for litter prevention.
110

Linking Microbial Community Dynamics to Litter and Soil Chemistry: Understanding the Mechanisms of Decomposition

Herman, John E. 08 September 2010 (has links)
No description available.

Page generated in 0.0646 seconds