• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Role of galectin-3 in liver progenitor cell proliferation and differentiation

Hsieh, Wei-Chen January 2011 (has links)
Liver progenitor cells (LPCs) respond to hepatic injury when hepatocyte division is impaired in chronic or severe injury. The LPCs are intimately surrounded by myofibroblasts, macrophages and laminin, thus constituting a potential progenitor cell niche. Laminin has been proposed to maintain LPCs in an undifferentiated state within the LPC niche. LPCs differentiate once they leave the laminin niche. However, mechanisms regulating this process have not been completely investigated. I hypothesized that cell membrane proteins which are implicated in intergin activation and mediation of cell adhesion to laminin such as galectin-3 and CD98 may be involved in this mechanism. Galectin-3 is a carbohydrate-binding protein which plays an important role in various cell functions, including cell growth, proliferation, adhesion, and differentiation. Galectin-3 has been reported to bind integrins and regulates β1 mediated adhesion to ECM. In addition, galectin-3 may also indirectly mediate β1 integrin activation by binding to and activating the heterodimeric transmembrane amino acid transporter CD98. However a role for galectin-3 in regulating LPC behavior has not been demonstrated. In this thesis, the mechanisms of galectin-3 mediating LPC proliferation and differentiation were investigated in an experimental model of LPC induction, the CDE diet, by using mutant mice lacking the gene encoding galectin-3. I have found galectin-3 is important for LPC induction and proliferation in vivo. In addition, galectin-3 is crucial for the LPC proliferation but is a negative regulator of LPC differentiation in vitro in a laminin dependent manner, suggesting that galectin-3 is required for LPC to maintain in an undifferentiated state on laminin. Moreover, the 2 extracellular binding activity of galectin-3 is important for LPC proliferation and adhesion to laminin. Furthermore, in the absence of galectin-3, LPCs down-regulate cyclin-D1 and the cyclin inhibitors p21 and p16 are elevated. Finally I suggest that integrin-β1 and CD98 are involved in regulating LPC proliferation. There is an increasing literature examining the role of LPC niche in regulating LPC behavior. My work suggests that galectin-3 is required for the expansion of LPCs in the injured adult liver. Galectin-3 enhances LPC adhesion to laminin. Galectin-3 is a crucial factor for LPCs to maintain in an undifferentiated state on laminin. My findings not only emphasize the requirement of LPCs to interact with their extracellular environment to expand but also propose that galectin-3 is a key signalling intermediary in the LPC niche, regulating homeostatic balance between proliferation and differentiation of LPCs, thus controlling regeneration.
2

Investigating the liver progenitor cell niche in the developing human liver

Kung, Janet Wui Cheung January 2016 (has links)
Liver cirrhosis places an increasing burden on healthcare worldwide. Currently the only treatment is liver transplantation. Whilst liver transplant has a relatively good five-year survival, donor organ shortage costs many lives every year and results in lifelong immunosuppression. Alternative treatments are thus urgently needed. It is with this background that there is understandable interest for the development of stem cell therapies for liver regeneration. The identification of putative liver stem cells has brought closer the previously separate fields of liver ontology, regeneration, and carcinogenesis. Significant overlaps in the regulation of these processes are now being described. For example, studies in embryonic liver development have already provided the basis for directed differentiation of human embryonic stem cells and induced pluripotent stem cells into hepatocyte-like cells. As a result, the understanding of the cell biology of proliferation and differentiation in the liver has been improved. This knowledge can be used to improve the function of hepatocyte-like cells for drug testing, bio-artificial livers, and transplantation. In parallel, the mechanisms regulating cancer cell biology are now clearer, providing fertile soil for novel therapeutic approaches. Recognition of the relationships between development, regeneration, and carcinogenesis, and the increasing evidence for the role of stem cells in all of these areas, has sparked fresh enthusiasm in understanding the underlying molecular mechanisms and has led to new targeted therapies for liver cirrhosis and primary liver cancers. Human liver progenitor cells (LPCs) have therapeutic potential but their in vitro culture results in inadequate differentiation, function, and phenotypic instability reflecting an incomplete understanding of in vivo processes. LPCs can be robustly isolated from second trimester human foetal livers by immunoselection for EpCAM+/CD29+/CD49d+/CD49e–/CD235a–/CD45– cells. Expression profiling of mRNA and microRNA in human foetal LPCs was performed and compared with mature human hepatocytes and human embryonic stem cells undergoing hepatocytic differentiation. Foetal LPCs exhibit a distinct transcriptome profile consistent with a stem cell signature, cell division, and some liver-specific functions. Bioinformatic integration of microRNA and mRNA datasets revealed that microRNAs up-regulated in LPCs targeted genes involved in metabolic processes implying repression of the mature hepatocyte phenotype. Control of LPC gene expression therefore occurs at both transcriptional and, via microRNAs, post-transcriptional levels. Furthermore, transcription factor binding site analyses revealed enriched E2F1 motif in gene and microRNA promoters suggesting feedback control in determining LPC fate. Foetal LPCs were capable of differentiation to a hepatocytic phenotype in the presence of appropriate paracrine signals provided by EpCAM– non-parenchymal cells (NPCs), which consist mainly of endothelial cells and hepatic stellate cells. Fibronectin, despite being produced in abundance by EpCAM– NPCs, had no effect on LPC synthetic function in vitro. The expression of fibronectin in the perisinusoidal space suggests its potential role of modulating cross-talk between hepatoblasts/hepatocytes, liver sinusoidal endothelial cells, and hepatic stellate cells. Fibronectin expression in the portal vein mesenchyme and laminin α5 expression along the ductal plate suggest that both matrix molecules, located in close proximity to LPCs, may be important in supporting the LPC niche. Findings in this work provide insight into the regulation of the human foetal LPC functional phenotype, bringing stem cell-based therapies for liver disease one step closer.
3

Interaction between the immune system and liver progenitor cells

Viebahn, Cornelia Sabine January 2009 (has links)
Liver progenitor cells (LPCs) play a major role in the regeneration process following chronic liver damage. LPCs can differentiate into hepatocytes and cholangiocytes and thus are capable of replenishing the damaged liver. Due to their plasticity and robust nature in culture systems, they are promising candidates for use in cell therapy. However, to be able to use LPCs as tissue regenerating stem cell-like cells in the clinic, we need to fully understand how they are controlled. Although a strong association between LPCs and inflammation has been shown in many chronic liver diseases, the role of the immune system in LPC-mediated hepatic regeneration is poorly understood. We hypothesise that specific immune cells and mediators are needed to induce the LPC compartment, and that these are common to the LPC response in different injury settings. Therefore, the present study focused on the characterisation of the inflammatory environment in the LPC response, which generates this niche. The aims of this study were (i) to identify the immune cells that are important for the LPC response, (ii) to define the cytokine profile and (iii) to determine the role of the cytokine producing cells during liver regeneration. To study hepatic inflammation following liver injury, a diet-induced model of liver injury (choline-deficient, ethionine-supplemented diet, CDE diet) was compared to two transgenic mouse models of immune-mediated hepatitis (Met-Kb, 178.3). Although all three models are characterised by hepatitis, histological analysis revealed that LPCs were only detectable in the CDE and Met-Kb livers. In the 178.3 model, livers regenerated from proliferating hepatocytes. An LPC response could not be induced in these mice even when liver damage was made more severe. In the other two models, LPC numbers increased over time showing the highest numbers one week after the peak of liver injury. LPCs were often found in close proximity to inflammatory cells, in particular macrophages.
4

Self-assembling peptide scaffolds as extracellular matrix analogs and their application in tissue engineering and regenerative biology

Genové Corominas, Elsa 26 October 2007 (has links)
En aquesta Tesi, un nou biomaterial de disseny composat per seqüències peptídiques repetitives i amfifíliques, que per autoensamblatge forma xarxes de nanofibres (i hidrogels), AcN-RADARADARADARADA-CONH2, s´ha utilitzat com a anàleg de la matriu extracel·lular per al manteniment, proliferació i diferenciació cel·lular. Aquest pèptid s'ha funcionalititzat amb motius biològicament actius procedents de proteïnes de la matriu extracel·lular incloent laminina-1 i colàgen IV. El scaffold peptídic autoensamblant RAD16-I i els seus derivats biològicament actius s´han caracteritzat i provat utilitzant diferents sistemes cel·lulars com pot ser les cèl·lules d'aorta humanes (HAEC), hepatocits madurs i la línea progenitora de fetge (Lig-8). La proteòlisi d'aquest pèptid s'ha avaluat utilitzant tripsina com a enzim proteolític, i els fragments resultants s'han analitzat per MALDI-TOF i AFM. Així mateix, la segona generació de biomaterials basats en el RAD16-I s'ha provat tant amb HAEC com amb hepatocits madurs. Amb aquests sistemes hem demostrat que el desenvolupament d'una matriu biomiètica reforça, a la vegada que manté, les funcions específiques de cada teixit. En particular, els resultats obtinguts en diferenciació, proliferació i manteniment de la funció cel·lular utilitzant pèptids sintètics autoensamblants són comparables amb els resultats que s'obtenen utilitzant matrius biològiques (Colàgen I i Matrigel). Això indica que els nostres anàlegs de la matriu extracel·lular poden substituir als materials naturals, i suggereix l'ús d'aquests materials intel·ligents amb capacitat instructiva en aplicacions terapèutiques. Així mateix s'ha provat que l'ús d'aquests pèptids auto-ensamblants és eficient en la construcció d'un nínxol de cèl·lules mare. Hem sigut capaços de controlar la cinètica cel·lular (de simètrica a assimètrica) induint diferenciació funcional, a la vegada que es mantenia una petita proporció de cèl·lules no diferenciades. Aquests resultats indiquen clarament que hem sigue capaços d'obtenir un nínxol on cèl·lules primitives (Lig-8) es diferencien adquirint funcions d'hepatocits madurs. Hem desenvolupat una plataforma de biomaterials que es podrien utilitzar per la funcionalització amb innumerables biomolècules amb capacitat d'induir processos biològics com la diferenciació, proliferació i funció metabòlica. Aquests biomaterials, preveiem que tindran un gran impacte a l'àrea terapèutica i biología regenerativa. / En esta Tesis, un nuevo biomaterial de diseño compuesto por secuencias peptídicas repetitivas y amfifílicas que por autoensamblaje forma redes de nanofibras (e hidrogeles), AcN-RADARADARADARADA-CONH2 (RAD16-I), se ha utilizado como análogo de la matriz extracelular para el mantenimiento, proliferación y diferenciación celular. Este péptido se ha funcionalizado con motivos biológicamente activos procedentes de proteínas de la matriz extracelular incluyendo laminina-1 y colágeno IV. El scaffold peptídico autoensamblante RAD16-I y sus derivados biológicamente activos se han caracterizado y probado utilizando diferentes sistemas celulares como puede ser células endoteliales de aorta humanas (HAEC), hepatocitos maduros y la línea progenitora de hígado Lig-8. La proteólisis de este péptido se ha evaluado utilizando tripsina como enzima proteolítico, y los fragmentos resultantes se han analizado por MALDI-TOF y AFM. Asimismo, la segunda generación de biomateriales basados en el RAD16-I se ha probado tanto con HAEC como hepatocitos maduros. Con estos sistemas hemos demostrado que el desarrollo de una matriz biomimética refuerza a la vez que mantiene las funciones específicas de cada tejido. En particular, los resultados obtenidos en diferenciación, proliferación y mantenimiento de la función celular utilizando los péptidos sintéticos auto-ensamblantes son comparables con los resultados que se obtienen usando matrices biológicas (Colágeno I y Matrigel). Esto indica que nuestros análogos de la matriz extracelular pueden reemplazar a los materiales naturales, y sugiere el uso de estos materiales inteligentes con capacidad instructiva en aplicaciones terapéuticas. Asimismo, se ha probado que el uso de estos péptidos auto-ensamblantes es eficiente en la construcción de un nicho de células madre. Hemos sido capaces de controlar la cinética celular (de simétrica a asimétrica) induciendo diferenciación funcional, a la vez que se mantenía una pequeña proporción de células no diferenciadas. Estos resultados indican claramente que hemos sido capaces de obtener un nicho donde células primitivas (Lig-8) se diferencian adquiriendo funciones de hepatocitos maduros. Hemos desarrollado una plataforma de biomateriales que se podrían utilizar para la funcionalización con innumerables biomoléculas con capacidad de inducir procesos biológicos como la diferenciación, proliferación y función metabólica. Estos biomateriales preveemos que tendrán un gran impacto en el área terapéutica y biología regenerativa. / In this Thesis, a new designed biomaterial made out of short repetitive amphiphilic peptide sequence AcN-RADARADARADARADA-CONH2 (RAD16-I) that self-assembles forming nanofiber networks (hydrogel scaffold) has been used as synthetic extracellular matrix analog for cell maintenance, proliferation and differentiation. This peptide has been functionalized with biological active motifs from extracellular matrix proteins including laminin-1 and collagen IV. The prototypic self-assembling peptide scaffold RAD16-I and its biologically active derivatives have been characterized and tested using several cellular systems such as human aortic endothelial cells (HAEC), mature hepatocytes and a putative liver progenitor cell line, Lig-8. The proteolysis of the peptide RAD16-I has been evaluated using trypsin as a proteolytic enzyme and the resulting fragments have been analyzed by MALDI-TOF and AFM. Moreover the second generation of RAD16-I-based biomaterials have been tested using HAEC and mature hepatocytes. With these systems we have shown that the development of a biomimetic matrix enhances as well as maintain tissue-specific functions. In particular, the results obtained in cell differentiation, proliferation and maintenance of cell function using the synthetic self-assembling peptide matrices, are comparable with the results obtained using natural biological matrices counterparts (Collagen-I and Matrigel). This indicates that our extracellular matrix analogs can replace the use of naturally-derived materials and suggests the use of these smart biomaterials with instructive capacity for cells in therapeutics. Moreover, the use of the self-assembling peptide RAD16-I in the recreation of a stem-cell niche proved to be highly efficient. We were able to control stem-cell kinetics (from symmetric to assymetric) inducing functional differentiation while maintaining a small proportion of undifferentiated cells. This striking results clearly indicate that we were able to obtain a stem-cell niche where primitive cells (Lig-8) undergo differentiation acquiring mature hepatic functions. We have developed a biomaterial platform that can be used for functionalization with innumerable biomolecules, with capacity to induce biological processes like differentiation, control of proliferation, metabolic function, etc. These biomaterials will have a strong impact in therapeutics and regenerative biology.

Page generated in 0.1106 seconds