Spelling suggestions: "subject:"wholly""
161 |
Streamside Management Zone effectiveness for protecting water quality following forestland application of biosolidsPratt, W. Aaron 14 August 2008 (has links)
Biosolids, materials resulting from domestic sewage treatment, are surface applied to forest soils to increase nutrient availability. Retaining streamside management zones (SMZs) can limit nutrient pollution of streams. We delineated 15 m SMZs along three intermittent streams in an 18-year-old Pinus taeda L. plantation. We applied biosolids outside the SMZ on one side of each of the streams maintaining the other side of the stream as control. We collected water samples from the three treated and six reference streams as well as from the perennial stream both upstream and downstream from the intermittent streams for 12 months following treatment. Along transects perpendicular to the treated streams, we collected overland flow samples, soil solution samples at 60 cm and extracts from ion exchange membranes (IEMs) placed in the surface soil. We found elevated nitrate concentrations outside the SMZ in the treated side soil solution samples, in which concentrations remained below 1.5 mg L-1. Nutrient concentrations outside the SMZ in treated side IEM extracts increased following biosolids application, returning to near control levels after one year. Nutrient concentrations in IEM extracts were not elevated adjacent to the streams. We observed elevated phosphorus concentrations adjacent to the stream in overland flow during one period on the treated side of the stream. Stream nutrient concentrations showed few differences downstream from the treatment with concentrations below 1.5 mg L-1. Our results indicate that a 15 m SMZ protected streams from nutrient pollution for the first year following biosolids application to adjacent forestlands. / Master of Science
|
162 |
Effects of hydrology-altering site preparation and fertilization/release on plant diversity and productivity in pine plantations in the coastal plain of VirginiaHauser, James W. 04 May 2010 (has links)
Biological diversity, or biodiversity, is declining on a global scale at unprecedented rates. These declines are largely the result of human activities and resource use. Intensive forestry is often cited as a contributing factor in biodiversity declines. Because forestry practices are being placed under increased scrutiny with respect to biodiversity impacts, the objective of this project was to determine the effects of specific silvicultural practices on plant diversity in pine plantations on wet flats in Virginia.
The study area consisted of three sites in the Coastal Plain. The sites were originally established in 1969 to study the effects of various treatments on loblolly pine growth. The three treatments applied were chop and burn, bedding, and ditching. Fertilization subplots of P, N and P, N, P, and lime, and a control were added to the treatment areas in 1978. This study was conducted in 1991 when stands were 23 years old, nearing rotation age.
Bedding exerted the greatest effect on plant diversity. Diversity was lower on the bedded treatment, although total biomass was higher. Bedding appears to increase pine growth by providing seedlings with more available soil volume and by reducing the vegetative regeneration of hardwoods and shrubs, thereby decreasing site diversity. Ditching likewise increased pine growth by lowering water table levels, but ditching had little effect on plant diversity.
Fertilization exhibited only minor effects on diversity, and those effects that were observed did not reveal any definitive trends. Of the treatments applied, liming appeared to increase pine growth most, possibly due to increased calcium availability.
Water table level was highly correlated to mid story diversity, though it was less correlated to other canopy layers. In addition, correlation analyses indicated a significant degree of interaction between canopy layers. It appears that diversity, particularly in the lower canopy layers, is affected directly by treatments and indirectly by shifts in overstory characteristics.
Intensive forest management involving hydrology-altering site preparation and fertilization impacted plant diversity within these wet flat plantations. Whether such changes affect wildlife habitat or ecosystem functioning requires further study. / Master of Science
|
163 |
Effects of a Control Release Nitrogen Fertilizer and Thinning on the Nitrogen Dynamics of a Mid-Rotation Loblolly Pine Stand in the Piedmont of VirginiaElliot, James Robertson 16 January 2008 (has links)
Nitrogen deficiency is characteristic of many mid-rotation loblolly pine (Pinus taeda L.) plantations in the Piedmont region of the southeastern USA. Fertilization with urea is the most common method used to correct this deficiency. Previous studies show that urea fertilization produces a rapid pulse of available nitrogen (N) with only a portion being utilized by plantation trees. Controlled release fertilizers release available N more slowly over a longer period of time and therefore may result in greater uptake efficiency. The objective of this study was to compare Nitroform®, a urea-formaldehyde controlled release N fertilizer versus urea and a control by measuring the effects of the two fertilizer treatments on N availability and loss as: total KCl extractable-N, total ion exchange membrane-N (IEM-N), N mineralization, and N volatilization, in a mid-rotation loblolly pine plantation in the Piedmont of Virginia. In addition, mid-summer and mid-winter fertilizations were compared to assess fertilizer uptake as a function of season. After the summer fertilization, Nitroform® significantly increased total KCl-extractable N, IEM-N, and N mineralization for two to three months over urea and the control. Three hundred times more N volatilized from urea than from controlled release Nitroform®. Interestingly, seven months after the summer application, the controlled release Nitroform® showed marked immobilization for three months while urea demonstrated greater N mineralization. After the winter application, fertilization with urea demonstrated greater soil inorganic N concentrations for two to three months over Nitroform®, very little N was immobilized, and volatilization was only 10 times that of Nitroform®. After summer and winter fertilizations, both fertilizer treatments significantly increased soil inorganic N concentrations and N volatilization over controls, however did not significantly increase N mineralization over controls when average response was tested over the entire sampling period. In addition to the fertilizer effects measured, a thinning only treatment was also incorporated into this study with soil N-availability indices compared to a control with no thinning or fertilization. The results from the thinning only treatment demonstrated no significant increases over the control in total KCl extractable-N, IEM-N, N-mineralization, or N volatilization when average responses were tested over the entire sampling period. / Master of Science
|
164 |
Economic Comparisons Between an Even-Aged and an Uneven-Aged Loblolly Pine Silvicultural SystemCafferata, Michael J.S. 28 May 1997 (has links)
This study compares financially optimal uneven-aged and even-aged silvicultural regimes of loblolly pine (Pinus Taeda). Uneven-aged regimes which maximize net present value (NPV) are found by quantifying the effects of diameter distribution (Q factor), maximum diameter, cutting cycle, and residual basal area on NPV. For the benchmark inputs, the regime yielding the highest NPV had a maximum diameter of 12 inches, residual basal area of 45 ft²/acre, and a cutting cycle of 11 years. Financially optimal even-aged regimes are taken from published literature of even-aged silviculture. Even-aged and uneven-aged silvicultural regimes are simulated starting from, 1) bare land, 2) a balanced uneven-aged loblolly pine stand, and 3) a mature even-aged loblolly pine stand. For the three starting conditions and selected benchmark variable values, simulation of even-aged silviculture yields NPVs of $877, $2,152 and $3,400 per acre and simulation of uneven-aged silviculture yields NPVs of $644, $2,084, and $2,569 per acre. Sensitivity analysis shows, for the levels of the variables tested, that even-aged silviculture yields higher NPVs than uneven-aged silviculture when starting from bare land or from a mature even-aged stand. When starting from an uneven-aged stand, for the variable values tested, uneven and even-aged silviculture are financially very competitive.
Aside from the aesthetic benefits of avoiding clearcutting under uneven-aged silviculture, non-timber considerations between loblolly pine silvicultural systems are not well documented. Resource professionals hold opinions often in direct conflict with each other regarding the non-timber costs and benefits of even-aged and uneven-aged silviculture when considering wildlife, soil and water, and catastrophic damage events. / Master of Science
|
165 |
Destination of Isotopic Nitrogen Fertilizer Under Varying Herbicide Regimes in a Mid-Rotation Loblolly Pine (Pinus taeda L.) Plantation in the Piedmont of Virginia, USAVan-Spanje, Megan 24 May 2023 (has links)
Mid-rotation fertilization and vegetation control are some of the most common silvicultural treatments in loblolly pine (Pinus taeda L.) plantations in the southeastern United States. Competing vegetation is commonly thought to sequester fertilizer nitrogen (N) and reduce the potential growth response to a mid-rotation fertilization treatment. This experiment aims to identify what proportion of applied N fertilizer is retained in the crop tree pine foliage, and the degree to which understory vegetation is competing for this resource. Our mid-rotation loblolly pine plantation received an application of 15N fertilization (urea 365 kg/ha, at 46% N by weight, i.e. 168 kg/ha of N) and a portion of plots received an understory vegetation control (basal spray application of triclopyr; 13.6% active ingredient) treatment either before fertilization or not at all. One-year post-fertilization, 15N contents within pine foliage, leaf fall/leaf litter, forest floor, and soil were measured, as was competing vegetation presence. There was significant variation in applied nitrogen acquisition among the different ecosystem components measured, with 0-15 cm soils retaining a majority at 32-37% added 15N. Differences in fertilizer N acquisition in pine foliage between plots with and without understory vegetation control was marginally significant (p = 0.06) with pine foliage in plots without understory vegetation capturing greater 15N (4.3% greater). Red maple (Acer rubrum) and oak species (Quercus spp.) were the most common competitors but neither had a uniquely pronounced effect on pine nitrogen sequestration. My data indicate that increasing competition reduces fertilizer N foliar concentrations in crop pine trees but at a modest rate and equally across species groups. An unrefined threshold determining when fertilizer N capture in crop pine trees was affected was found at 3.1 m2/ha of competing vegetation basal area. This site will continue to be monitored over time to assess fertilizer N retention in loblolly pine each year after fertilization and evaluate the fertilizer N capture within competing vegetation. / Master of Science / Some of the most prevalent management practices for mid-rotation (age 15, i.e., roughly halfway through a crop cycle) loblolly pine (Pinus taeda L.) plantations in the southeastern United States are fertilization and vegetation control. Nitrogen (N) is consistently one of the most limiting factors to productivity. The addition of N via fertilization is therefore a common forestry practice. However, when a stand is fertilized, the added resource is partitioned and cycled throughout the ecosystem. It is presumed that the amount of fertilizer N obtained by crop trees in a plantation is dependent on the level of competing vegetation (i.e., weed-trees and shrubs) present on site. Controlling competing vegetation prior to fertilization may therefore be warranted under certain conditions. To date, the amount of competing vegetation where it begins to impact fertilizer uptake by the crop tree is unknown. This study aims to elucidate this competing vegetation threshold to better inform mid-rotation management of loblolly pine plantations. This study examined applied fertilizer N capture in ecosystem components with varying levels of understory vegetation, and found more fertilizer N in pine foliage when understory vegetation was completely removed prior to fertilization. No single understory hardwood weed species had a uniquely strong influence on crop tree productivity uptake. Plots that ranked in the upper third in competing vegetation presence did have significantly less foliar fertilizer N in the pine crop trees. Additional replication of this study would be necessary to determine a universal threshold of competing vegetation which would trigger the removal of competing vegetation prior to fertilization.
|
166 |
Evaluation of preferential energy absorption in earlywood and latewood fibers of loblolly pine in cyclic compressionRueckert, Cheryl B. 01 January 1998 (has links)
No description available.
|
167 |
Identification, cloning, expression analysis and functional characterization of genes expressed early in Loblolly pine embryogenesisCiavatta, Vincent Thomas 19 February 2002 (has links)
No description available.
|
168 |
The influence of acid rain on mycorrhizae the roles of nitrate and sulfate ions and indole acetic acid in the development of Pisolithus tinctorius on Pinus taeda L. /Andrews, Isaac M., January 1984 (has links) (PDF)
Thesis (Ph. D.)--Institute of Paper Chemistry, 1984. / Includes bibliographical references (p. 54-56).
|
169 |
The Effects of Habitat Management on Wildlife Use in a Managed Loblolly Pine ForestMcCollum, Johannah Reed 10 August 2018 (has links)
To improve habitat quality for wildlife, habitat managers prescribe various disturbances. Habitat management techniques alter the vegetation structure, composition, and quality, changing food and cover resources and availability. To investigate how habitat management and vegetation heterogeneity affect space use by wildlife species, I deployed 81 camera-traps and collected fine scale vegetation data across a variety of treatments (i.e., canopy reduction, prescribed fire, and herbicide application) in a managed loblolly pine forest. I created a new method for accounting for imperfect detection and error in camera count data. My method provided better inference about the effects of variables on animal use. Species responded differently to different functional groups of plants, but predicted use from generalized additive models showed higher use in the most intensively managed pine stands, indicating that management promotes animal use by improving habitat quality. Animals used every treatment, indicating the need for heterogeneity in resources when managing wildlife.
|
170 |
Climate sensitive diameter growth models for major tree species in MississippiSubedi, Sujan 13 May 2022 (has links) (PDF)
Anticipated climate change and increasing wood demand require dependable diameter growth models for adaptive forest management. We used a mixed-effects modeling approach with Forest Inventory and Analysis (FIA) data to fit diameter growth models for loblolly pine, other softwood species (slash pine, shortleaf pine, and longleaf pine), sweetgum, and other hardwood (southern red oak, red maple, and water oak) species. Climatic variables coupled with individual tree attributes and competition factors improved climate insensitive models. Growth of loblolly pine and sweetgum was positively correlated with mean temperature of the coldest month. Mean temperature of the warmest month negatively influenced diameter growth of loblolly pine and other hardwood species. Growing season precipitation and summer precipitation balance had negative effects on the growth of softwood and hardwood species, respectively. Inclusion of FIA plot as random effect improved model fit statistics and residual distribution of climate sensitive models. These findings will be useful to managers for recalibrating diameter growth models resulting in improved biomass yield and volume estimates that will better inform decisions.
|
Page generated in 0.0395 seconds