11 |
Adaptive Losses for Camera Pose SupervisionDahlqvist, Marcus January 2021 (has links)
This master thesis studies the learning of dense feature descriptors where camera poses are the only supervisory signal. The use of camera poses as a supervisory signal has only been published once before, and this thesis expands on this previous work by utilizing a couple of different techniques meant increase the robustness of the method, which is particularly important when not having access to ground-truth correspondences. Firstly, an adaptive robust loss is utilized to better differentiate inliers and outliers. Secondly, statistical properties during training are both enforced and adapted to, in an attempt to alleviate problems with uncertainties introduced by not having true correspondences available. These additions are shown to slightly increase performance, and also highlights some key ideas related to prediction certainty and robustness when working with camera poses as a supervisory signal. Finally, possible directions for future work are discussed.
|
12 |
Compact Representations and Multi-cue Integration for RoboticsSöderberg, Robert January 2005 (has links)
This thesis presents methods useful in a bin picking application, such as detection and representation of local features, pose estimation and multi-cue integration. The scene tensor is a representation of multiple line or edge segments and was first introduced by Nordberg in [30]. A method for estimating scene tensors from gray-scale images is presented. The method is based on orientation tensors, where the scene tensor can be estimated by correlations of the elements in the orientation tensor with a number of 1D filters. Mechanisms for analyzing the scene tensor are described and an algorithm for detecting interest points and estimating feature parameters is presented. It is shown that the algorithm works on a wide spectrum of images with good result. Representations that are invariant with respect to a set of transformations are useful in many applications, such as pose estimation, tracking and wide baseline stereo. The scene tensor itself is not invariant and three different methods for implementing an invariant representation based on the scene tensor is presented. One is based on a non-linear transformation of the scene tensor and is invariant to perspective transformations. Two versions of a tensor doublet is presented, which is based on a geometry of two interest points and is invariant to translation, rotation and scaling. The tensor doublet is used in a framework for view centered pose estimation of 3D objects. It is shown that the pose estimation algorithm has good performance even though the object is occluded and has a different scale compared to the training situation. An industrial implementation of a bin picking application have to cope with several different types of objects. All pose estimation algorithms use some kind of model and there is yet no model that can cope with all kinds of situations and objects. This thesis presents a method for integrating cues from several pose estimation algorithms for increasing the system stability. It is also shown that the same framework can also be used for increasing the accuracy of the system by using cues from several views of the object. An extensive test with several different objects, lighting conditions and backgrounds shows that multi-cue integration makes the system more robust and increases the accuracy. Finally, a system for bin picking is presented, built from the previous parts of this thesis. An eye in hand setup is used with a standard industrial robot arm. It is shown that the system works for real bin-picking situations with a positioning error below 1 mm and an orientation error below 1o degree for most of the different situations. / <p>Report code: LiU-TEK-LIC-2005:15.</p>
|
13 |
Contributions to facial feature extraction for face recognition / Contributions à l'extraction de caractéristiques pour la reconnaissance de visagesNguyen, Huu-Tuan 19 September 2014 (has links)
La tâche la plus délicate d'un système de reconnaissance faciale est la phase d'extraction de caractéristiques significatives et discriminantes. Dans le cadre de cette thèse, nous nous sommes focalisés sur cette tâche avec comme objectif l'élaboration d'une représentation de visage robuste aux variations majeures suivantes: variations d'éclairage, de pose, de temps, images de qualité différentes (vidéosurveillance). Par ailleurs, nous avons travaillé également dans une optique de traitement temps réel. Tout d'abord, en tenant compte des caractéristiques d'orientation des traits principaux du visages (yeux, bouche), une nouvelle variante nommée ELBP de célèbre descripteur LBP a été proposée. Elle s'appuie sur les informations de micro-texture contenues dans une ellipse horizontale. Ensuite, le descripteur EPOEM est construit afin de tenir compte des informations d'orientation des contours. Puis un descripteur nommée PLPQMC qui intégre des informations obtenues par filtrage monogénique dans le descripteur LPQ est proposé. Enfin le descripteur LPOG intégrant des informations de gradient est présenté. Chacun des descripteurs proposés est testé sur les 3 bases d'images AR, FERET et SCface. Il en résulte que les descripteurs PLPQMC et LPOG sont les plus performants et conduisent à des taux de reconnaissance comparables voire supérieur à ceux des meilleurs méthodes de l'état de l'art. / Centered around feature extraction, the core task of any Face recognition system, our objective is devising a robust facial representation against major challenges, such as variations of illumination, pose and time-lapse and low resolution probe images, to name a few. Besides, fast processing speed is another crucial criterion. Towards these ends, several methods have been proposed through out this thesis. Firstly, based on the orientation characteristics of the facial information and important features, like the eyes and mouth, a novel variant of LBP, referred as ELBP, is designed for encoding micro patterns with the usage of an horizontal ellipse sample. Secondly, ELBP is exploited to extract local features from oriented edge magnitudes images. By this, the Elliptical Patterns of Oriented Edge Magnitudes (EPOEM) description is built. Thirdly, we propose a novel feature extraction method so called Patch based Local Phase Quantization of Monogenic components (PLPQMC). Lastly, a robust facial representation namely Local Patterns of Gradients (LPOG) is developed to capture meaningful features directly from gradient images. Chiefs among these methods are PLPQMC and LPOG as they are per se illumination invariant and blur tolerant. Impressively, our methods, while offering comparable or almost higher results than that of existing systems, have low computational cost and are thus feasible to deploy in real life applications.
|
14 |
Automatické třídění fotografií podle obsahu / Automatic Photography CategorizationVeľas, Martin January 2013 (has links)
This thesis deals with content based automatic photo categorization. The aim of the work is to experiment with advanced techniques of image represenatation and to create a classifier which is able to process large image dataset with sufficient accuracy and computation speed. A traditional solution based on using visual codebooks is enhanced by computing color features, soft assignment of visual words to extracted feature vectors, usage of image segmentation in process of visual codebook creation and dividing picture into cells. These cells are processed separately. Linear SVM classifier with explicit data embeding is used for its efficiency. Finally, results of experiments with above mentioned techniques of the image categorization are discussed.
|
Page generated in 0.067 seconds