11 |
Estimação de volatilidade em séries financeiras : modelos aditivos semi-paramétricos e GARCHSantos, Douglas Gomes dos January 2008 (has links)
A estimação e previsão da volatilidade de ativos são de suma importância para os mercados financeiros. Temas como risco e incerteza na teoria econômica moderna incentivaram a procura por métodos capazes de modelar uma variância condicional que evolui ao longo do tempo. O objetivo principal desta dissertação é comparar alguns métodos de regressão global e local quanto à extração da volatilidade dos índices Ibovespa e Standard and Poor´s 500. Para isto, são realizadas estimações e previsões com os modelos GARCH paramétricos e com os modelos aditivos semi-paramétricos. Os primeiros, tradicionalmente utilizados na estimação de segundos momentos condicionais, têm sua capacidade sugerida em diversos artigos. Os segundos provêm alta flexibilidade e descrições visualmente informativas das relações entre as variáveis, tais como assimetrias e não linearidades. Sendo assim, testar o desempenho dos últimos frente às estruturas paramétricas consagradas apresenta-se como uma investigação apropriada. A realização das comparações ocorre em períodos selecionados de alta volatilidade no mercado financeiro internacional (crises), sendo a performance dos modelos medida dentro e fora da amostra. Os resultados encontrados sugerem a capacidade dos modelos semi-paramétricos em estimar e prever a volatilidade dos retornos dos índices nos momentos analisados. / Volatility estimation and forecasting are very important matters for the financial markets. Themes like risk and uncertainty in modern economic theory have encouraged the search for methods that allow for the modeling of time varying variances. The main objective of this dissertation is to compare global and local regressions in terms of their capacity to extract the volatility of Ibovespa and Standard and Poor 500 indexes. To achieve this aim, parametric GARCH and semiparametric additive models estimation and forecasting are performed. The first ones, traditionally applied in the estimation of conditional second moments, have their capacity suggested in many papers. The second ones provide high flexibility and visually informative descriptions of the relationships between the variables, like asymmetries and nonlinearities. Therefore, testing the last ones´ performance against the acknowledged parametric structures is an appropriate investigation. Comparisons are made in selected periods of high volatility in the international financial market (crisis), measuring the models´ performance inside and outside sample. The results that were found suggest the capacity of semiparametric models to estimate and forecast the Indexes returns´ volatility at the analyzed moments.
|
12 |
Estimação de volatilidade em séries financeiras : modelos aditivos semi-paramétricos e GARCHSantos, Douglas Gomes dos January 2008 (has links)
A estimação e previsão da volatilidade de ativos são de suma importância para os mercados financeiros. Temas como risco e incerteza na teoria econômica moderna incentivaram a procura por métodos capazes de modelar uma variância condicional que evolui ao longo do tempo. O objetivo principal desta dissertação é comparar alguns métodos de regressão global e local quanto à extração da volatilidade dos índices Ibovespa e Standard and Poor´s 500. Para isto, são realizadas estimações e previsões com os modelos GARCH paramétricos e com os modelos aditivos semi-paramétricos. Os primeiros, tradicionalmente utilizados na estimação de segundos momentos condicionais, têm sua capacidade sugerida em diversos artigos. Os segundos provêm alta flexibilidade e descrições visualmente informativas das relações entre as variáveis, tais como assimetrias e não linearidades. Sendo assim, testar o desempenho dos últimos frente às estruturas paramétricas consagradas apresenta-se como uma investigação apropriada. A realização das comparações ocorre em períodos selecionados de alta volatilidade no mercado financeiro internacional (crises), sendo a performance dos modelos medida dentro e fora da amostra. Os resultados encontrados sugerem a capacidade dos modelos semi-paramétricos em estimar e prever a volatilidade dos retornos dos índices nos momentos analisados. / Volatility estimation and forecasting are very important matters for the financial markets. Themes like risk and uncertainty in modern economic theory have encouraged the search for methods that allow for the modeling of time varying variances. The main objective of this dissertation is to compare global and local regressions in terms of their capacity to extract the volatility of Ibovespa and Standard and Poor 500 indexes. To achieve this aim, parametric GARCH and semiparametric additive models estimation and forecasting are performed. The first ones, traditionally applied in the estimation of conditional second moments, have their capacity suggested in many papers. The second ones provide high flexibility and visually informative descriptions of the relationships between the variables, like asymmetries and nonlinearities. Therefore, testing the last ones´ performance against the acknowledged parametric structures is an appropriate investigation. Comparisons are made in selected periods of high volatility in the international financial market (crisis), measuring the models´ performance inside and outside sample. The results that were found suggest the capacity of semiparametric models to estimate and forecast the Indexes returns´ volatility at the analyzed moments.
|
13 |
Evaluation of Spatial Interpolation Techniques Built in the Geostatistical Analyst Using Indoor Radon Data for Ohio,USASarmah, Dipsikha January 2012 (has links)
No description available.
|
14 |
Estimation of Unmeasured Radon Concentrations in Ohio Using Quantile Regression ForestBandreddy, Neel Kamal January 2014 (has links)
No description available.
|
15 |
Analysis of Implied Volatility Surfaces / Analyse von Impliziten VolatilitätsflächenSchnellen, Marina 04 May 2007 (has links)
No description available.
|
16 |
Flexibilnost, robustnost a nespojitost v neparamerických regresních postupech / Flexibility, Robustness and Discontinuities in Nonparametric Regression ApproachesMaciak, Matúš January 2011 (has links)
Thesis title: Flexibility, Robustness and Discontinuity in Nonparametric Regression Approaches Author: Mgr. Matúš Maciak, M.Sc. Department: Department of Probability and Mathematical Statistics, Charles University in Prague Supervisor: Prof. RNDr. Marie Hušková, DrSc. huskova@karlin.mff.cuni.cz Abstract: In this thesis we focus on local polynomial estimation approaches of an unknown regression function while taking into account also some robust issues like a presence of outlying observa- tions or heavy-tailed distributions of random errors as well. We will discuss the most common method used for such settings, so called local polynomial M-smoothers and we will present the main statistical properties and asymptotic inference for this method. The M-smoothers method is especially suitable for such cases because of its natural robust flavour, which can nicely deal with outliers as well as heavy-tailed distributed random errors. Another important quality we will focus in this thesis on is a discontinuity issue where we allow for sudden changes (discontinuity points) in the unknown regression function or its derivatives respectively. We will propose a discontinuity model with different variability structures for both independent and dependent random errors while the discontinuity points will be treated in a...
|
17 |
Optimum Savitzky-Golay Filtering for Signal EstimationKrishnan, Sunder Ram January 2013 (has links) (PDF)
Motivated by the classic works of Charles M. Stein, we focus on developing risk-estimation frameworks for denoising problems in both one-and two-dimensions. We assume a standard additive noise model, and formulate the denoising problem as one of estimating the underlying clean signal from noisy measurements by minimizing a risk corresponding to a chosen loss function. Our goal is to incorporate perceptually-motivated loss functions wherever applicable, as in the case of speech enhancement, with the squared error loss being considered for the other scenarios. Since the true risks are observed to depend on the unknown parameter of interest, we circumvent the roadblock by deriving finite-sample un-biased estimators of the corresponding risks based on Stein’s lemma. We establish the link with the multivariate parameter estimation problem addressed by Stein and our denoising problem, and derive estimators of the oracle risks. In all cases, optimum values of the parameters characterizing the denoising algorithm are determined by minimizing the Stein’s unbiased risk estimator (SURE).
The key contribution of this thesis is the development of a risk-estimation approach for choosing the two critical parameters affecting the quality of nonparametric regression, namely, the order and bandwidth/smoothing parameters. This is a classic problem in statistics, and certain algorithms relying on derivation of suitable finite-sample risk estimators for minimization have been reported in the literature (note that all these works consider the mean squared error (MSE) objective). We show that a SURE-based formalism is well-suited to the regression parameter selection problem, and that the optimum solution guarantees near-minimum MSE (MMSE) performance. We develop algorithms for both glob-ally and locally choosing the two parameters, the latter referred to as spatially-adaptive regression. We observe that the parameters are so chosen as to tradeoff the squared bias and variance quantities that constitute the MSE. We also indicate the advantages accruing out of incorporating a regularization term in the cost function in addition to the data error term. In the more general case of kernel regression, which uses a weighted least-squares (LS) optimization, we consider the applications of image restoration from very few random measurements, in addition to denoising of uniformly sampled data. We show that local polynomial regression (LPR) becomes a special case of kernel regression, and extend our results for LPR on uniform data to non-uniformly sampled data also. The denoising algorithms are compared with other standard, performant methods available in the literature both in terms of estimation error and computational complexity.
A major perspective provided in this thesis is that the problem of optimum parameter choice in nonparametric regression can be viewed as the selection of optimum parameters of a linear, shift-invariant filter. This interpretation is provided by deriving motivation out of the hallmark paper of Savitzky and Golay and Schafer’s recent article in IEEE Signal Processing Magazine. It is worth noting that Savitzky and Golay had shown in their original Analytical Chemistry journal article, that LS fitting of a fixed-order polynomial over a neighborhood of fixed size is equivalent to convolution with an impulse response that is fixed and can be pre-computed. They had provided tables of impulse response coefficients for computing the smoothed function and smoothed derivatives for different orders and neighborhood sizes, the resulting filters being referred to as Savitzky-Golay (S-G) filters. Thus, we provide the new perspective that the regression parameter choice is equivalent to optimizing for the filter impulse response length/3dB bandwidth, which are inversely related. We observe that the MMSE solution is such that the S-G filter chosen is of longer impulse response length (equivalently smaller cutoff frequency) at relatively flat portions of the noisy signal so as to smooth noise, and vice versa at locally fast-varying portions of the signal so as to capture the signal patterns. Also, we provide a generalized S-G filtering viewpoint in the case of kernel regression.
Building on the S-G filtering perspective, we turn to the problem of dynamic feature computation in speech recognition. We observe that the methodology employed for computing dynamic features from the trajectories of static features is in fact derivative S-G filtering. With this perspective, we note that the filter coefficients can be pre-computed, and that the whole problem of delta feature computation becomes efficient. Indeed, we observe an advantage by a factor of 104 on making use of S-G filtering over actual LS polynomial fitting and evaluation. Thereafter, we study the properties of first-and second-order derivative S-G filters of certain orders and lengths experimentally. The derivative filters are bandpass due to the combined effects of LPR and derivative computation, which are lowpass and highpass operations, respectively. The first-and second-order S-G derivative filters are also observed to exhibit an approximately constant-Q property. We perform a TIMIT phoneme recognition experiment comparing the recognition accuracies obtained using S-G filters and the conventional approach followed in HTK, where Furui’s regression formula is made use of. The recognition accuracies for both cases are almost identical, with S-G filters of certain bandwidths and orders registering a marginal improvement. The accuracies are also observed to improve with longer filter lengths, for a particular order. In terms of computation latency, we note that S-G filtering achieves delta and delta-delta feature computation in parallel by linear filtering, whereas they need to be obtained sequentially in case of the standard regression formulas used in the literature.
Finally, we turn to the problem of speech enhancement where we are interested in de-noising using perceptually-motivated loss functions such as Itakura-Saito (IS). We propose to perform enhancement in the discrete cosine transform domain using risk-minimization. The cost functions considered are non-quadratic, and derivation of the unbiased estimator of the risk corresponding to the IS distortion is achieved using an approximate Taylor-series analysis under high signal-to-noise ratio assumption. The exposition is general since we focus on an additive noise model with the noise density assumed to fall within the exponential class of density functions, which comprises most of the common densities. The denoising function is assumed to be pointwise linear (modified James-Stein (MJS) estimator), and parallels between Wiener filtering and the optimum MJS estimator are discussed.
|
18 |
Optimum Savitzky-Golay Filtering for Signal EstimationKrishnan, Sunder Ram January 2013 (has links) (PDF)
Motivated by the classic works of Charles M. Stein, we focus on developing risk-estimation frameworks for denoising problems in both one-and two-dimensions. We assume a standard additive noise model, and formulate the denoising problem as one of estimating the underlying clean signal from noisy measurements by minimizing a risk corresponding to a chosen loss function. Our goal is to incorporate perceptually-motivated loss functions wherever applicable, as in the case of speech enhancement, with the squared error loss being considered for the other scenarios. Since the true risks are observed to depend on the unknown parameter of interest, we circumvent the roadblock by deriving finite-sample un-biased estimators of the corresponding risks based on Stein’s lemma. We establish the link with the multivariate parameter estimation problem addressed by Stein and our denoising problem, and derive estimators of the oracle risks. In all cases, optimum values of the parameters characterizing the denoising algorithm are determined by minimizing the Stein’s unbiased risk estimator (SURE).
The key contribution of this thesis is the development of a risk-estimation approach for choosing the two critical parameters affecting the quality of nonparametric regression, namely, the order and bandwidth/smoothing parameters. This is a classic problem in statistics, and certain algorithms relying on derivation of suitable finite-sample risk estimators for minimization have been reported in the literature (note that all these works consider the mean squared error (MSE) objective). We show that a SURE-based formalism is well-suited to the regression parameter selection problem, and that the optimum solution guarantees near-minimum MSE (MMSE) performance. We develop algorithms for both glob-ally and locally choosing the two parameters, the latter referred to as spatially-adaptive regression. We observe that the parameters are so chosen as to tradeoff the squared bias and variance quantities that constitute the MSE. We also indicate the advantages accruing out of incorporating a regularization term in the cost function in addition to the data error term. In the more general case of kernel regression, which uses a weighted least-squares (LS) optimization, we consider the applications of image restoration from very few random measurements, in addition to denoising of uniformly sampled data. We show that local polynomial regression (LPR) becomes a special case of kernel regression, and extend our results for LPR on uniform data to non-uniformly sampled data also. The denoising algorithms are compared with other standard, performant methods available in the literature both in terms of estimation error and computational complexity.
A major perspective provided in this thesis is that the problem of optimum parameter choice in nonparametric regression can be viewed as the selection of optimum parameters of a linear, shift-invariant filter. This interpretation is provided by deriving motivation out of the hallmark paper of Savitzky and Golay and Schafer’s recent article in IEEE Signal Processing Magazine. It is worth noting that Savitzky and Golay had shown in their original Analytical Chemistry journal article, that LS fitting of a fixed-order polynomial over a neighborhood of fixed size is equivalent to convolution with an impulse response that is fixed and can be pre-computed. They had provided tables of impulse response coefficients for computing the smoothed function and smoothed derivatives for different orders and neighborhood sizes, the resulting filters being referred to as Savitzky-Golay (S-G) filters. Thus, we provide the new perspective that the regression parameter choice is equivalent to optimizing for the filter impulse response length/3dB bandwidth, which are inversely related. We observe that the MMSE solution is such that the S-G filter chosen is of longer impulse response length (equivalently smaller cutoff frequency) at relatively flat portions of the noisy signal so as to smooth noise, and vice versa at locally fast-varying portions of the signal so as to capture the signal patterns. Also, we provide a generalized S-G filtering viewpoint in the case of kernel regression.
Building on the S-G filtering perspective, we turn to the problem of dynamic feature computation in speech recognition. We observe that the methodology employed for computing dynamic features from the trajectories of static features is in fact derivative S-G filtering. With this perspective, we note that the filter coefficients can be pre-computed, and that the whole problem of delta feature computation becomes efficient. Indeed, we observe an advantage by a factor of 104 on making use of S-G filtering over actual LS polynomial fitting and evaluation. Thereafter, we study the properties of first-and second-order derivative S-G filters of certain orders and lengths experimentally. The derivative filters are bandpass due to the combined effects of LPR and derivative computation, which are lowpass and highpass operations, respectively. The first-and second-order S-G derivative filters are also observed to exhibit an approximately constant-Q property. We perform a TIMIT phoneme recognition experiment comparing the recognition accuracies obtained using S-G filters and the conventional approach followed in HTK, where Furui’s regression formula is made use of. The recognition accuracies for both cases are almost identical, with S-G filters of certain bandwidths and orders registering a marginal improvement. The accuracies are also observed to improve with longer filter lengths, for a particular order. In terms of computation latency, we note that S-G filtering achieves delta and delta-delta feature computation in parallel by linear filtering, whereas they need to be obtained sequentially in case of the standard regression formulas used in the literature.
Finally, we turn to the problem of speech enhancement where we are interested in de-noising using perceptually-motivated loss functions such as Itakura-Saito (IS). We propose to perform enhancement in the discrete cosine transform domain using risk-minimization. The cost functions considered are non-quadratic, and derivation of the unbiased estimator of the risk corresponding to the IS distortion is achieved using an approximate Taylor-series analysis under high signal-to-noise ratio assumption. The exposition is general since we focus on an additive noise model with the noise density assumed to fall within the exponential class of density functions, which comprises most of the common densities. The denoising function is assumed to be pointwise linear (modified James-Stein (MJS) estimator), and parallels between Wiener filtering and the optimum MJS estimator are discussed.
|
19 |
Dependence modeling between continuous time stochastic processes : an application to electricity markets modeling and risk management / Modélisation de la dépendance entre processus stochastiques en temps continu : une application aux marchés de l'électricité et à la gestion des risquesDeschatre, Thomas 08 December 2017 (has links)
Cette thèse traite de problèmes de dépendance entre processus stochastiques en temps continu. Ces résultats sont appliqués à la modélisation et à la gestion des risques des marchés de l'électricité.Dans une première partie, de nouvelles copules sont établies pour modéliser la dépendance entre deux mouvements Browniens et contrôler la distribution de leur différence. On montre que la classe des copules admissibles pour les Browniens contient des copules asymétriques. Avec ces copules, la fonction de survie de la différence des deux Browniens est plus élevée dans sa partie positive qu'avec une dépendance gaussienne. Les résultats sont appliqués à la modélisation jointe des prix de l'électricité et d'autres commodités énergétiques. Dans une seconde partie, nous considérons un processus stochastique observé de manière discrète et défini par la somme d'une semi-martingale continue et d'un processus de Poisson composé avec retour à la moyenne. Une procédure d'estimation pour le paramètre de retour à la moyenne est proposée lorsque celui-ci est élevé dans un cadre de statistique haute fréquence en horizon fini. Ces résultats sont utilisés pour la modélisation des pics dans les prix de l'électricité.Dans une troisième partie, on considère un processus de Poisson doublement stochastique dont l'intensité stochastique est une fonction d'une semi-martingale continue. Pour estimer cette fonction, un estimateur à polynômes locaux est utilisé et une méthode de sélection de la fenêtre est proposée menant à une inégalité oracle. Un test est proposé pour déterminer si la fonction d'intensité appartient à une certaine famille paramétrique. Grâce à ces résultats, on modélise la dépendance entre l'intensité des pics de prix de l'électricité et de facteurs exogènes tels que la production éolienne. / In this thesis, we study some dependence modeling problems between continuous time stochastic processes. These results are applied to the modeling and risk management of electricity markets. In a first part, we propose new copulae to model the dependence between two Brownian motions and to control the distribution of their difference. We show that the class of admissible copulae for the Brownian motions contains asymmetric copulae. These copulae allow for the survival function of the difference between two Brownian motions to have higher value in the right tail than in the Gaussian copula case. Results are applied to the joint modeling of electricity and other energy commodity prices. In a second part, we consider a stochastic process which is a sum of a continuous semimartingale and a mean reverting compound Poisson process and which is discretely observed. An estimation procedure is proposed for the mean reversion parameter of the Poisson process in a high frequency framework with finite time horizon, assuming this parameter is large. Results are applied to the modeling of the spikes in electricity prices time series. In a third part, we consider a doubly stochastic Poisson process with stochastic intensity function of a continuous semimartingale. A local polynomial estimator is considered in order to infer the intensity function and a method is given to select the optimal bandwidth. An oracle inequality is derived. Furthermore, a test is proposed in order to determine if the intensity function belongs to some parametrical family. Using these results, we model the dependence between the intensity of electricity spikes and exogenous factors such as the wind production.
|
20 |
Contributions à l’estimation à noyau de fonctionnelles de la fonction de répartition avec applications en sciences économiques et de gestion / Contribution to kernel estimation of functionals of the distribution function with applications in economics and managementMadani, Soffana 29 September 2017 (has links)
La répartition des revenus d'une population, la distribution des instants de défaillance d'un matériel et l'évolution des bénéfices des contrats d'assurance vie - étudiées en sciences économiques et de gestion – sont liées a des fonctions continues appartenant à la classe des fonctionnelles de la fonction de répartition. Notre thèse porte sur l'estimation à noyau de fonctionnelles de la fonction de répartition avec applications en sciences économiques et de gestion. Dans le premier chapitre, nous proposons des estimateurs polynomiaux locaux dans le cadre i.i.d. de deux fonctionnelles de la fonction de répartition, notées LF et TF , utiles pour produire des estimateurs lisses de la courbe de Lorenz et du temps total de test normalisé (scaled total time on test transform). La méthode d'estimation est décrite dans Abdous, Berlinet et Hengartner (2003) et nous prouvons le bon comportement asymptotique des estimateurs polynomiaux locaux. Jusqu'alors, Gastwirth (1972) et Barlow et Campo (1975) avaient défini des estimateurs continus par morceaux de la courbe de Lorenz et du temps total de test normalisé, ce qui ne respectait pas la propriété de continuité des courbes initiales. Des illustrations sur données simulées et réelles sont proposées. Le second chapitre a pour but de fournir des estimateurs polynomiaux locaux dans le cadre i.i.d. des dérivées successives des fonctionnelles de la fonction de répartition explorées dans le chapitre précédent. A part l'estimation de la dérivée première de la fonction TF qui se traite à l'aide de l'estimation lisse de la fonction de répartition, la méthode d'estimation employée est l'approximation polynomiale locale des fonctionnelles de la fonction de répartition détaillée dans Berlinet et Thomas-Agnan (2004). Divers types de convergence ainsi que la normalité asymptotique sont obtenus, y compris pour la densité et ses dérivées successives. Des simulations apparaissent et sont commentées. Le point de départ du troisième chapitre est l'estimateur de Parzen-Rosenblatt (Rosenblatt (1956), Parzen (1964)) de la densité. Nous améliorons dans un premier temps le biais de l'estimateur de Parzen-Rosenblatt et de ses dérivées successives à l'aide de noyaux d'ordre supérieur (Berlinet (1993)). Nous démontrons ensuite les nouvelles conditions de normalité asymptotique de ces estimateurs. Enfin, nous construisons une méthode de correction des effets de bord pour les estimateurs des dérivées de la densité, grâce aux dérivées d'ordre supérieur. Le dernier chapitre s'intéresse au taux de hasard, qui contrairement aux deux fonctionnelles de la fonction de répartition traitées dans le premier chapitre, n'est pas un rapport de deux fonctionnelles linéaires de la fonction de répartition. Dans le cadre i.i.d., les estimateurs à noyau du taux de hasard et de ses dérivées successives sont construits à partir des estimateurs à noyau de la densité et ses dérivées successives. La normalité asymptotique des premiers estimateurs est logiquement obtenue à partir de celle des seconds. Nous nous plaçons ensuite dans le modèle à intensité multiplicative, un cadre plus général englobant des données censurées et dépendantes. Nous menons la procédure à terme de Ramlau-Hansen (1983) afin d'obtenir les bonnes propriétés asymptotiques des estimateurs du taux de hasard et de ses dérivées successives puis nous tentons d'appliquer l'approximation polynomiale locale dans ce contexte. Le taux d'accumulation du surplus dans le domaine de la participation aux bénéfices pourra alors être estimé non parametriquement puisqu'il dépend des taux de transition (taux de hasard d'un état vers un autre) d'une chaine de Markov (Ramlau-Hansen (1991), Norberg (1999)) / The income distribution of a population, the distribution of failure times of a system and the evolution of the surplus in with-profit policies - studied in economics and management - are related to continuous functions belonging to the class of functionals of the distribution function. Our thesis covers the kernel estimation of some functionals of the distribution function with applications in economics and management. In the first chapter, we offer local polynomial estimators in the i.i.d. case of two functionals of the distribution function, written LF and TF , which are useful to produce the smooth estimators of the Lorenz curve and the scaled total time on test transform. The estimation method is described in Abdous, Berlinet and Hengartner (2003) and we prove the good asymptotic behavior of the local polynomial estimators. Until now, Gastwirth (1972) and Barlow and Campo (1975) have defined continuous piecewise estimators of the Lorenz curve and the scaled total time on test transform, which do not respect the continuity of the original curves. Illustrations on simulated and real data are given. The second chapter is intended to provide smooth estimators in the i.i.d. case of the derivatives of the two functionals of the distribution function presented in the last chapter. Apart from the estimation of the first derivative of the function TF with a smooth estimation of the distribution function, the estimation method is the local polynomial approximation of functionals of the distribution function detailed in Berlinet and Thomas-Agnan (2004). Various types of convergence and asymptotic normality are obtained, including the probability density function and its derivatives. Simulations appear and are discussed. The starting point of the third chapter is the Parzen-Rosenblatt estimator (Rosenblatt (1956), Parzen (1964)) of the probability density function. We first improve the bias of this estimator and its derivatives by using higher order kernels (Berlinet (1993)). Then we find the modified conditions for the asymptotic normality of these estimators. Finally, we build a method to remove boundary effects of the estimators of the probability density function and its derivatives, thanks to higher order derivatives. We are interested, in this final chapter, in the hazard rate function which, unlike the two functionals of the distribution function explored in the first chapter, is not a fraction of two linear functionals of the distribution function. In the i.i.d. case, kernel estimators of the hazard rate and its derivatives are produced from the kernel estimators of the probability density function and its derivatives. The asymptotic normality of the first estimators is logically obtained from the second ones. Then, we are placed in the multiplicative intensity model, a more general framework including censored and dependent data. We complete the described method in Ramlau-Hansen (1983) to obtain good asymptotic properties of the estimators of the hazard rate and its derivatives and we try to adopt the local polynomial approximation in this context. The surplus rate in with-profit policies will be nonparametrically estimated as its mathematical expression depends on transition rates (hazard rates from one state to another) in a Markov chain (Ramlau-Hansen (1991), Norberg (1999))
|
Page generated in 0.0478 seconds