• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 41
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Talking GPS Locating System

Buchwitz, Guy R. 11 1900 (has links)
International Telemetering Conference Proceedings / October 30-November 02, 1995 / Riviera Hotel, Las Vegas, Nevada / The Talking GPS Locating System (TGLS) was developed to facilitate recovery of airborne targets by vocalizing and transmitting their Global Positioning System (GPS) coordinates to surface recovery teams following target splashdown. The airborne portion of the TGLS includes an off-the-shelf five-channel GPS receiver board, a GPS antenna, a microcontroller board with voice sample/playback circuitry, and a transmitter with antenna. Also part of the TGLS is a Record/Test Unit (RTU) which is used for pre-launch voice recording and ground tests. Upon splashdown, the TGLS is energized, the GPS receiver is initialized, and an optional homing tone burst -- periodically interrupted by a voice message relaying target and GPS receiver status -- is transmitted. Once the receiver has output valid longitude and latitude information to the microcontroller, this position is vocalized as the GPS status portion of the broadcast message. Just one intelligible reception of this message by any inexpensive, properly-tuned voice receiver will allow recovery teams to vector to within 25 to 100 meters of the target regardless of weather conditions or the time of day.
2

Locating Arrays: Construction, Analysis, and Robustness

January 2018 (has links)
abstract: Modern computer systems are complex engineered systems involving a large collection of individual parts, each with many parameters, or factors, affecting system performance. One way to understand these complex systems and their performance is through experimentation. However, most modern computer systems involve such a large number of factors that thorough experimentation on all of them is impossible. An initial screening step is thus necessary to determine which factors are relevant to the system's performance and which factors can be eliminated from experimentation. Factors may impact system performance in different ways. A factor at a specific level may significantly affect performance as a main effect, or in combination with other main effects as an interaction. For screening, it is necessary both to identify the presence of these effects and to locate the factors responsible for them. A locating array is a relatively new experimental design that causes every main effect and interaction to occur and distinguishes all sets of d main effects and interactions from each other in the tests where they occur. This design is therefore helpful in screening complex systems. The process of screening using locating arrays involves multiple steps. First, a locating array is constructed for all possibly significant factors. Next, the system is executed for all tests indicated by the locating array and a response is observed. Finally, the response is analyzed to identify the significant system factors for future experimentation. However, simply constructing a reasonably sized locating array for a large system is no easy task and analyzing the response of the tests presents additional difficulties due to the large number of possible predictors and the inherent imbalance in the experimental design itself. Further complications can arise from noise in the system or errors in testing. This thesis has three contributions. First, it provides an algorithm to construct locating arrays using the Lovász Local Lemma with Moser-Tardos resampling. Second, it gives an algorithm to analyze the system response efficiently. Finally, it studies the robustness of the analysis to the heavy-hitters assumption underlying the approach as well as to varying amounts of system noise. / Dissertation/Thesis / Masters Thesis Computer Engineering 2018
3

Trees with Unique Minimum Locating-Dominating Sets.

Lane, Stephen M 06 May 2006 (has links) (PDF)
A set S of vertices in a graph G = (V, E) is a locating-dominating set if S is a dominating set of G, and every pair of distinct vertices {u, v} in V - S is located with respect to S, that is, if the set of neighbors of u that are in S is not equal to the set of neighbors of v that are in S. We give a construction of trees that have unique minimum locating-dominating sets.
4

An experimental comparison of wireless position locating algorithms based on received signal strength

Gutierrez, Felix 2008 December 1900 (has links)
This thesis presents and discusses research associated with locating wireless devices. Several algorithms have been developed to determine the physical location of the wireless device and a subset of these algorithms only rely on received signal strength (RSS). Two of the most promising RSS-based algorithms are the LC and dwMDS algorithms; however each algorithm has only been tested via computer simulations with different environmental parameters. To determine which algorithm performs better (i.e., produces estimates that are closer to the true location of the wireless device), a fair comparison needs to be made using the same set of data. The goal of this research is to compare the performance of these two algorithms using not only the same set of data, but data that is collected from the field. An extensive measurement campaign at different environments provided a vast amount of data as input to these algorithms. Both of these algorithms are evaluated in a onedimensional (straight line) and two-dimensional (grid) setting. In total, six environments were used to test these algorithms; three environments for each setting. The results show that on average, the LC algorithm outperforms dwMDS in most of the environments. Since the same data was inputted for each algorithm, a fair comparison can be made and doesn’t give any unfair advantage to any particular algorithm. In addition, since the data was taken directly from the field as opposed to computer simulations, this provides a better degree of confidence for a successful realworld implementation.
5

Target Locating in Unknown Environments Using Distributed Autonomous Coordination of Aerial Vehicles

Mohr, Hannah Dornath 14 May 2019 (has links)
The use of autonomous aerial vehicles (UAVs) to explore unknown environments is a growing field of research; of particular interest is locating a target that emits a signal within an unknown environment. Several physical processes produce scalar signals that attenuate with distance from their source, such as chemical, biological, electromagnetic, thermal, and radar signals. The natural decay of the signal with increasing distance enables a gradient ascent method to be used to navigate toward the target. The UAVs navigate around obstacles whose positions are initially unknown; a hybrid controller comprised of overlapping control modes enables robust obstacle avoidance in the presence of exogenous inputs by precluding topological obstructions. Limitations of a distributed gradient augmentation approach to obstacle avoidance are discussed, and an alternative algorithm is presented which retains the robustness of the hybrid control while leveraging local obstacle position information to improve non-collision reliability. A heterogeneous swarm of multirotors demonstrates the target locating problem, sharing information over a multicast wireless private network in a fully distributed manner to form an estimate of the signal's gradient, informing the direction of travel toward the target. The UAVs navigate around obstacles, showcasing both algorithms developed for obstacle avoidance. Each UAV performs its own target seeking and obstacle avoidance calculations in a distributed architecture, receiving position data from an OptiTrack motion capture system, illustrating the applicability of the control law to real world challenges (e.g., unsynchronized clocks among different UAVs, limited computational power, and communication latency). Experimental and theoretical results are compared. / Master of Science / In this project, a new method for locating a target using a swarm of unmanned drones in an unknown environment is developed and demonstrated. The drones measure a signal such as a beacon that is being emitted by the target of interest, sharing their measurement information with the other drones in the swarm. The magnitude of the signal increases as the drones move toward the target, allowing the drones to estimate the direction to the target by comparing their measurements with the measurements collected by other drones. While seeking the target in this manner, the drones detect obstacles that they need to avoid. An issue that arises in obstacle avoidance is that drones can get stuck in front of an obstacle if they are unable to decide which direction to travel; in this work, the decision process is managed by combining two control modes that correspond to the two direction options available, using a robust switching algorithm to select which mode to use for each obstacle. This work extends the approach used in literature to include multiple obstacles and allow obstacles to be detected dynamically, enabling the drones to navigate through an unknown environment as they locate the target. The algorithms are demonstrated on unmanned drones in the VT SpaceDrones test facility, illustrating the capabilities and effectiveness of the methods presented in a series of scenarios.
6

Locating and Total Dominating Sets in Trees

Haynes, Teresa W., Henning, Michael A., Howard, Jamie 01 May 2006 (has links)
A set S of vertices in a graph G = (V,E) is a total dominating set of G if every vertex of V is adjacent to a vertex in S. We consider total dominating sets of minimum cardinality which have the additional property that distinct vertices of V are totally dominated by distinct subsets of the total dominating set.
7

Analýza navigačních systémů ve vozidlech / Vehicle Navigation Systems Analysis

Beran, Pavel January 2011 (has links)
This piece of Master's thesis deals with basic means of navigation, with emphases on satellite navigation and mobile phone navigation. It explains the signal receiving principals, global positioning and how it works with particular devices. It also covers information of how to convert data using various programs. And finally it shows the results of practical verification of the accuracy in locating position, altitude, azimuth and speed by using the navigation.
8

Interaction Testing, Fault Location, and Anonymous Attribute-Based Authorization

January 2019 (has links)
abstract: This dissertation studies three classes of combinatorial arrays with practical applications in testing, measurement, and security. Covering arrays are widely studied in software and hardware testing to indicate the presence of faulty interactions. Locating arrays extend covering arrays to achieve identification of the interactions causing a fault by requiring additional conditions on how interactions are covered in rows. This dissertation introduces a new class, the anonymizing arrays, to guarantee a degree of anonymity by bounding the probability a particular row is identified by the interaction presented. Similarities among these arrays lead to common algorithmic techniques for their construction which this dissertation explores. Differences arising from their application domains lead to the unique features of each class, requiring tailoring the techniques to the specifics of each problem. One contribution of this work is a conditional expectation algorithm to build covering arrays via an intermediate combinatorial object. Conditional expectation efficiently finds intermediate-sized arrays that are particularly useful as ingredients for additional recursive algorithms. A cut-and-paste method creates large arrays from small ingredients. Performing transformations on the copies makes further improvements by reducing redundancy in the composed arrays and leads to fewer rows. This work contains the first algorithm for constructing locating arrays for general values of $d$ and $t$. A randomized computational search algorithmic framework verifies if a candidate array is $(\bar{d},t)$-locating by partitioning the search space and performs random resampling if a candidate fails. Algorithmic parameters determine which columns to resample and when to add additional rows to the candidate array. Additionally, analysis is conducted on the performance of the algorithmic parameters to provide guidance on how to tune parameters to prioritize speed, accuracy, or a combination of both. This work proposes anonymizing arrays as a class related to covering arrays with a higher coverage requirement and constraints. The algorithms for covering and locating arrays are tailored to anonymizing array construction. An additional property, homogeneity, is introduced to meet the needs of attribute-based authorization. Two metrics, local and global homogeneity, are designed to compare anonymizing arrays with the same parameters. Finally, a post-optimization approach reduces the homogeneity of an anonymizing array. / Dissertation/Thesis / Doctoral Dissertation Computer Science 2019
9

A Model for Automated Construction Materials Tracking

Nasir, Hassan January 2008 (has links)
Materials management is a critical factor in construction project performance, particularly in the industrial sector. Research has shown that construction materials and installed equipment may constitute more than 50% of the total cost for a typical industrial project. Therefore the proper management of this single largest component can improve the productivity and cost efficiency of a project and help ensure its timely completion. One of the major problems associated with construction materials management is tracking materials in the supply chain and tracking their locations at job sites. Identification is integral to this process. Research projects conducted during the last decade to automate the identification and tracking of materials have concluded that such automation can increase productivity and cost efficiency as well as improve schedule performance, reduce the number of lost items, improve route and site optimization, and improve data entry. However, these technologies have been rapidly evolving, and knowledge concerning their implementation is sparse. One new approach enables locating of components within a few meters at a cost at least a magnitude lower than preceding technologies. It works by combining GPS located reads of RFID tags read at a rate of several thousand Hertz in order to estimate the location of these inexpensive tags which are attached to key construction materials. This technology was rapidly prototyped and deployed on two large industrial construction projects in 2007 and 2008. This thesis analyzes and synthesizes the data and experiences from these unique and large scale field trials as well as the literature in order to develop a general implementation model for automated construction materials tracking for industrial projects. It is concluded from the model that this new automated construction materials tracking technology is likely to be successful if implemented full scale on well selected future projects. This conclusion is supported by subsequent industry decisions.
10

A Model for Automated Construction Materials Tracking

Nasir, Hassan January 2008 (has links)
Materials management is a critical factor in construction project performance, particularly in the industrial sector. Research has shown that construction materials and installed equipment may constitute more than 50% of the total cost for a typical industrial project. Therefore the proper management of this single largest component can improve the productivity and cost efficiency of a project and help ensure its timely completion. One of the major problems associated with construction materials management is tracking materials in the supply chain and tracking their locations at job sites. Identification is integral to this process. Research projects conducted during the last decade to automate the identification and tracking of materials have concluded that such automation can increase productivity and cost efficiency as well as improve schedule performance, reduce the number of lost items, improve route and site optimization, and improve data entry. However, these technologies have been rapidly evolving, and knowledge concerning their implementation is sparse. One new approach enables locating of components within a few meters at a cost at least a magnitude lower than preceding technologies. It works by combining GPS located reads of RFID tags read at a rate of several thousand Hertz in order to estimate the location of these inexpensive tags which are attached to key construction materials. This technology was rapidly prototyped and deployed on two large industrial construction projects in 2007 and 2008. This thesis analyzes and synthesizes the data and experiences from these unique and large scale field trials as well as the literature in order to develop a general implementation model for automated construction materials tracking for industrial projects. It is concluded from the model that this new automated construction materials tracking technology is likely to be successful if implemented full scale on well selected future projects. This conclusion is supported by subsequent industry decisions.

Page generated in 0.3384 seconds