• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 18
  • 5
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 71
  • 27
  • 22
  • 22
  • 15
  • 14
  • 11
  • 11
  • 11
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Table of log21/p, p.log21/p and p.log21/p + (1-p).log21/1-p

January 1952 (has links)
Bibliography: p. 22.
12

A Development of the Exponential and Logarithmic Functions

Mackey, Benford B. 01 1900 (has links)
This thesis discusses a development of the exponential and logarithmic functions.
13

Interpolação linear logaritmica / Linear Interpolation logarithmic

Rossi, Rosângela de Lourdes 04 September 2015 (has links)
Submitted by Luciana Sebin (lusebin@ufscar.br) on 2016-09-20T12:21:32Z No. of bitstreams: 1 DissRLR.pdf: 4212262 bytes, checksum: f63697a666a8852c76e6c394a0ea7d56 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-21T12:44:46Z (GMT) No. of bitstreams: 1 DissRLR.pdf: 4212262 bytes, checksum: f63697a666a8852c76e6c394a0ea7d56 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-21T12:44:53Z (GMT) No. of bitstreams: 1 DissRLR.pdf: 4212262 bytes, checksum: f63697a666a8852c76e6c394a0ea7d56 (MD5) / Made available in DSpace on 2016-09-21T12:45:01Z (GMT). No. of bitstreams: 1 DissRLR.pdf: 4212262 bytes, checksum: f63697a666a8852c76e6c394a0ea7d56 (MD5) Previous issue date: 2015-09-04 / Não recebi financiamento / This dissertation project aims at the Teaching of Linear Interpolation logarithmic, with the target group students from High school and their teachers to facilitate the meeting of the logarithms of values without the use of board existing common logarithms or the calculating machines. The concepts, the properties of logarithms and interpolations inserted in activities based on the Didactic Engineering are the brand and the engine of development of this work. The materials handling, visualization of results and activities developed by high school students from public schools ensured the originality of the teaching relationship / learning of mathematics, especially in the Linear Interpolation logarithmic, circumscribing on purpose that objective. / Este projeto de dissertação tem por objetivo o Ensino da Interpolação Linear Logarítmica, tendo como público-alvo estudantes do Ensino médio bem como seus educadores visando facilitar o encontro dos valores de logaritmos sem o uso da tábua de logaritmos decimais existentes nem das máquinas de calcular. Os conceitos, as propriedades dos logaritmos e as interpolações inseridas nas atividades baseadas na Engenharia Didática são a marca e o propulsor do desenvolvimento desta dissertação. A manipulação de materiais, a visualização dos resultados e as atividades desenvolvidas pelos alunos do Ensino Médio da escola pública garantiu a originalidade da relação ensino/aprendizagem da Matemática, em especial na Interpolação Linear Logarítmica, circunscrevendo de forma proposital o referido objetivo.
14

Teaching logarithmic inequalities using omnigraph.

Basadien, Soraya. January 2007 (has links)
<p>Over the last few years it became clear that the students struggle with the basic concepts of logarithms and inequalities, let alone logarithmic inequalities due to the lack of exposure of these concepts at high school. In order to fully comprehend logarithmic inequalities, a good understanding of the logarithmic graph is important. Thus, the opportunity was seen to change the method of instruction by introducing the graphical method to solve logarithmic inequalities. It was decided to use an mathematical software program, Omnigraph, in this research.</p>
15

A função logaritmo e a régua de cálculo / The logarithm function and the slide rule

Pippa, Tania Cristina Maggioni 17 March 2014 (has links)
No início do século XVII, o escocês John Napier revolucionou os métodos de cálculo da época com a invenção dos logaritmos. O logaritmo de Napier não era exatamente o que usamos hoje. Naquela época, o trabalho de multiplicação, divisão, cálculo de potências e extração de raízes eram trabalhosos e feitos a partir de senos. Surgiram as primeiras tábuas de logaritmos, inventadas independentemente por John Napier (1550-1617) e Jost Bürgi (1552-1632). Pouco depois, Henry Briggs (1561-1631) aperfeiçoou essas tábuas, apresentando os logaritmos decimais. A contribuição fundamental dos logaritmos é a de facilitar os cálculos através da transformação de operações de multiplicação em adição e de operações de divisão em subtração. Essas transformações foram de grande importância nos cálculos trabalhosos que estavam envolvidos em Astronomia e Navegação. Em 1632, um matemático inglês chamado William Oughtred inventou a régua de cálculo, com base na \"Tábua de Napier\". Esse foi um grande passo em direção à calculadora e à construção dos computadores. Nesse trabalho propomos a utilização da régua de cálculo no ensino das propriedades dos logaritmos. Para tanto, foram estudados tópicos como a história dos logaritmos, a função logaritmo, a caracterização das funções logarítmicas, a associação de logaritmos a progressões aritméticas e geométricas e o uso de uma régua de cálculo / In the early seventeenth century, the Scotsman John Napier revolutionized the calculation methods of that time with the invention of logarithms. The Napier logarithm was not exactly the same as we use now. At that time, the multiplication, division, exponents calculation and extracting roots were demanded extensive labor. John Napier (1550-1617) and Jost Bürgi (1552-1632) invented independently the first logarithm tables. Shortly after, Henry Briggs (1561-1631) improved these boards, presenting the decimal logarithms. The main contribution of logarithms is to make calculations easier by transforming multiplication operations into addition ones and division operations into subtraction ones. These changes have been of great importance in laborious calculations that involved Astronomy and Navigation. In 1632, an English mathematician called William Oughtred invented the slide ruler, based on the \"Napier board\". This was a big step towards the invention of the calculator and the computer. In this work we propose the use of the slide ruler in teaching the properties of logarithms. Thus, topics such as the history of logarithms, the logarithm function, the characterization of logarithmic functions, the association of the logarithms with arithmetical and geometrical progressions, and the use of a slide ruler were studied
16

Logaritmos e aplicações /

Pecorari, Mariana. January 2013 (has links)
Orientador: Marta Cilene Gadotti / Banca: Wladimir Seixas / Banca: Eliris Cristina Rizziolli / Resumo: Logaritmos constituem um assunto desafiador a ser ministrado aos alunos do Ensino Médio, sendo que a maioria destes apresenta grande dificuldade de compreensão e resolução dos exercícios propostos. O objetivo do presente trabalho foi o de apresentar aos docentes uma forma diferente e mais acessível de ensinar logaritmos aos seus alunos, constituindo-se uma interessante alternativa à forma que é comumente utilizada nas escolas em geral. O logaritmo apresenta-se como ferramenta matemática aplicável em inúmeras utilizações, sendo que estas podem ser inseridas nas explicações dadas em ambiente educacional e servir como motivação ao estudo de suas propriedades. A introdução e apresentação da teoria dos logaritmos foram realizadas segundo Lima, 2010. A explicação a ser explorada no Ensino Médio utilizou o conceito de área aproximada abaixo da hipérbole y = 1=x. No entanto, aos professores foi também apresentada a definição do logaritmo natural por meio de uma integral de Riemann / Abstract: Logarithms are a challenging topic taught to high school students, and most of these had difficulties to understanding and resolution of proposed exercises. The objective of this study was to present to teachers a different and more accessible form to teach logarithms to their students, becoming an interesting alternative to the form that is commonly used in schools in general. The logarithm is presented as mathematical tool applicable in many situations, and these situations can be inserted in the explanations given in classrooms and serve as motivation for the study of their properties. The introduction and presentation of the theory of logarithms were performed according to Lima, 2010. The explanation to be explored in high school used the concept of approximate area under the hyperbola y = 1=x. However, the teacher also has the definition given by the natural logarithm of a Riemann integral / Mestre
17

Teaching logarithmic inequalities using omnigraph.

Basadien, Soraya. January 2007 (has links)
<p>Over the last few years it became clear that the students struggle with the basic concepts of logarithms and inequalities, let alone logarithmic inequalities due to the lack of exposure of these concepts at high school. In order to fully comprehend logarithmic inequalities, a good understanding of the logarithmic graph is important. Thus, the opportunity was seen to change the method of instruction by introducing the graphical method to solve logarithmic inequalities. It was decided to use an mathematical software program, Omnigraph, in this research.</p>
18

Transference and Szego's theorem for measure preserving transformations

Koucherik, Elena, January 2007 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2007. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on March 11, 2008) Includes bibliographical references.
19

Logarithmic number system (LNS) in MPEG encoding system /

Ruan, Jie, January 2006 (has links)
Thesis (Ph. D.)--Lehigh University, 2006. / Includes vita. Includes bibliographical references (leaves 85-95).
20

Logaritmos e aplicações

Pecorari, Mariana [UNESP] 13 November 2013 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:01Z (GMT). No. of bitstreams: 0 Previous issue date: 2013-11-13Bitstream added on 2014-06-13T18:53:55Z : No. of bitstreams: 1 000733605.pdf: 1656430 bytes, checksum: cdb7c08f3230272a57759ba0829b8dfd (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Logaritmos constituem um assunto desafiador a ser ministrado aos alunos do Ensino Médio, sendo que a maioria destes apresenta grande dificuldade de compreensão e resolução dos exercícios propostos. O objetivo do presente trabalho foi o de apresentar aos docentes uma forma diferente e mais acessível de ensinar logaritmos aos seus alunos, constituindo-se uma interessante alternativa à forma que é comumente utilizada nas escolas em geral. O logaritmo apresenta-se como ferramenta matemática aplicável em inúmeras utilizações, sendo que estas podem ser inseridas nas explicações dadas em ambiente educacional e servir como motivação ao estudo de suas propriedades. A introdução e apresentação da teoria dos logaritmos foram realizadas segundo Lima, 2010. A explicação a ser explorada no Ensino Médio utilizou o conceito de área aproximada abaixo da hipérbole y = 1=x. No entanto, aos professores foi também apresentada a definição do logaritmo natural por meio de uma integral de Riemann / Logarithms are a challenging topic taught to high school students, and most of these had difficulties to understanding and resolution of proposed exercises. The objective of this study was to present to teachers a different and more accessible form to teach logarithms to their students, becoming an interesting alternative to the form that is commonly used in schools in general. The logarithm is presented as mathematical tool applicable in many situations, and these situations can be inserted in the explanations given in classrooms and serve as motivation for the study of their properties. The introduction and presentation of the theory of logarithms were performed according to Lima, 2010. The explanation to be explored in high school used the concept of approximate area under the hyperbola y = 1=x. However, the teacher also has the definition given by the natural logarithm of a Riemann integral

Page generated in 0.037 seconds