• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 62
  • 49
  • 34
  • 25
  • 24
  • 13
  • 11
  • 10
  • 10
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Determining The Impacts Of Beach Restoration On Loggerhead (caretta Caretta) And Green Turtle (chelonia Mydas) Nesting Patterns And Reproductive Success Along Florida's Atlantic Coast

Hays, Allison Whitney 01 January 2012 (has links)
Artificial beach nourishment, the most common method to mitigate coastal erosion in the United States, is also considered the most ecologically friendly alternative for shoreline stabilization. However, this habitat alteration has the potential to impact nesting marine turtles and developing hatchlings. The first objective of this study was to determine how nourishing beaches with two different design templates affects loggerhead (Caretta caretta) and green turtle (Chelonia mydas) nesting success, the ratio of nests to the total number of nests and non-nesting emergences, and reproductive success, the ratio of hatched and emerged hatchlings to the total number of eggs deposited. Two types of restoration designs exist along the southern Brevard County, FL coastline, which supports some of the highest density loggerhead and green turtle nesting worldwide. Since 2005, approximately 35 kilometers of beach have undergone 1) fullscale restoration (typically called nourishment), where sand was added above and below the mean high tide line (2005, 2010) or 2) dune restoration, where sand was placed on the dune (2005, 2006, 2008, 2009). To quantify the effects of these restoration types, we used a Before-After-ControlImpact-Paired Series (BACIPS) model, which tests for significance between the difference in nesting success rates at the impact (engineered) and control sites (natural beach) before and after restoration ( ). For loggerheads, there was a significant difference in after dune restoration during the years of construction (2005, 2006, 2008, and 2009; p
52

Impact of Increased Green Turtle Nesting on Loggerhead Fitness

Carmichael, Amanda R 01 January 2018 (has links)
Marine turtles exhibit strong fidelity to their nesting beaches, making the conservation of nesting beaches important for ensuring successful sea turtle populations. Conservation of these nesting beaches involves understanding how species interact with the environment and each other, and understanding how environmental change and population growth can affect the suitability of the nesting habitat. The Archie Carr National Wildlife Refuge (ACNWR) is unusual in its high density of sea turtle nesting by two species: green (Chelonia mydas) and loggerhead (Caretta caretta) turtles. The ACNWR in Melbourne Beach, Florida was established in 1991 due to the high density of loggerhead nesting, but in the time since it was established there has been a significant increase in green turtle nesting, from fewer than 50 nests in 1982 to over 15,000 in 2017. With such a high density of these two species in one relatively small area (21 kilometers of beach), the two species may compete for space. This is especially true for green turtles, which disturb large amounts of sand during their nesting process; in 2017, we observed 338 loggerhead clutches disturbed by nesting females during nesting surveys, nearly all of which were disturbed by green turtles. Using observed spatial and temporal nesting patterns for both green turtles and loggerheads on the ACNWR, I examined the effects these species may have on each other's nests now and in the future. Additionally, green turtles and loggerheads nest in different densities along the length of the ACNWR, with green turtles more concentrated in the southern portions of the Refuge. Finally, green turtle nesting begins and peaks approximately one month later on the ACNWR than loggerhead nesting. For each of these metrics, there is both considerable overlap and distinct separation between the two species. By using these metrics in a modeling approach, I estimated the probability of nest disturbance by a subsequently nesting female, ranging from 0 to 0.105, and how these probabilities are predicted to change over time with a growing green turtle population. Evaluating the carrying capacity of this beach is important in the context of habitat disturbance, including climate change and an increase in storm frequency, and informing adaptive management strategies for effective conservation.
53

The Effect of Air Temperature on the Incubation Period and Hatching Success of In Situ Loggerhead Sea Turtle (Caretta caretta) Clutches in Broward County, Florida

Kawana, Lucy Teal 31 July 2013 (has links)
The survival rates of pre-emergent sea turtle hatchlings are critically dependent upon temperature. This study aimed to determine if changes in air temperature can explain some of the variability in hatching success observed over a 12 year period for loggerhead sea turtle (Caretta caretta) nests in Broward County. Air temperature data for the hatching seasons of 1999 to 2010 were obtained from the NOAA National Climatic Data Center’s Fort Lauderdale beach station. The loggerhead sea turtle hatching data collected by the Broward County Sea Turtle Conservation Program from the same time period was examined to assess the potential effects of air temperature on the hatching success and the incubation duration. Mean yearly incubation times were analyzed for trends and compared to mean nesting season temperatures. The relationships between the incubation durations and mean seasonal and intra-seasonal air temperature fluctuations as well as the relationship between hatching success and air temperature was tested for significance. The hatching success was also compared to the incubation times in order to establish if shorter incubation durations, were related to lower hatching success rates. There have been large fluctuations in the average daily hatching success rates ranging from 10 to 100% over the twelve years examined in this study in Broward County. Significant decreases in incubation durations were apparent during times of increasing average air temperatures. In five of the twelve seasons there was also a significant relationship between the hatching success rates and the average air temperature, in which lower hatching success rates were evident during times of higher average air temperatures. There was a significant correlation between the incubation durations and the hatching success rates in six of the seasons as well, suggesting that lower hatching success rates are related to shorter incubation times. The pattern in average yearly hatching success rates were significantly related to the average monthly air temperatures in July suggesting that lower hatching success rates during the month of July were a result of higher temperatures during this time of the hatching season. A better understanding of the effects that air temperature has on loggerhead sea turtle clutches in Broward County can provide future insights for the fluctuating survival rates of sea turtle clutches and if the changes are natural or the result of conservation efforts.
54

Effects of Localized NAO, ONI (ENSO) and AMO Events on Reproductive Patterns in Loggerhead (Caretta caretta) Sea Turtles in Broward County, FL, USA

Hammill, Allison L. 31 July 2013 (has links)
A variety of anthropomorphic and environmental stresses are threatening the existence of all seven species of sea turtles. There is growing evidence that alterations in surface waters and sediment temperatures are negatively impacting reproductive success of loggerhead sea turtles (Caretta caretta). Fluctuations in water temperature associated with localized climate oscillations heavily alter the food web dynamics of the ocean. Feeding conditions are expected to be a critical factor in determining body mass and productivity for breeding seasons. An increase in regional temperatures could lead to prolonged reduction in food sources, as well as reduced nesting and recruitment. Loggerhead sea turtle nesting data from 1995-2011 werre compared with the average yearly North Atlantic Oscillation (NAO) and Atlantic Multidecadal Oscillation (AMO) which are important climatic events impacting the SST in the Atlantic Ocean. Because El Niño Southern Oscillation (ENSO) is a global event, it was proposed that turtles in the Atlantic may follow a similar trend. ENSO was quantified using Oceanic Nino Index (ONI). Analysis of loggerhead sea turtle nest frequencies from the years 1995-2011 in comparison to seasonal climate changes showed a significant inverse relationship between the detrended loggerhead nests and average yearly NAO when lagged two years, suggesting loggerheads may spend years prior breeding obtaining optimum body mass to increase successful reproduction. The detrended nesting data showed a tendency toward higher occurrence of nests during La Niña years while nest frequencies decreased during El Niño year; when the yearly detrended loggerhead nesting data was compared with the average yearly ONI; showing a significant inverse relationship without a lag. This may also suggest a relationship between changes of productivity of the ocean influenced by smaller scale climate changes and loggerhead nest frequencies.
55

Beach Nourishment: Effects on the Hatching & Emergence Success Rates of Leatherback (Dermochelys coriacea), Loggerhead (Caretta caretta), and Green (Chelonia mydas) Sea Turtles

Caderas, Jenna 01 July 2016 (has links)
Broward County, Florida is a popular tourism destination. Due to its popularity, much of the shoreline has been modified and natural habitats were replaced with infrastructure such as houses, condominiums, resorts, and restaurants. The same Broward County beaches utilized by tourists and residents are important for three species of nesting sea turtles, including the Leatherback, Dermochelys coriacea, Loggerhead, Caretta caretta, and Green, Chelonia mydas, Turtles. The Broward County Sea Turtle Conservation Program (BCSTCP) collects yearly data in order to study these endangered reptiles. Increased anthropogenic effects including further coastal development (public & private), public beach events, public beach access, as well as natural events, have caused these important nesting beaches to erode and narrow. In an effort to control this erosion damage, Broward County has performed a number of beach nourishment projects. This study found yearly fluctuations in sea turtle hatching and emergence success rates, and years of beach nourishment projects significantly decreased these rates. Yearly hatching data available from Broward County concludes that beach nourishment, as well as hurricanes and tropical storms cause decreases in sea turtle hatching and emergence success rates in Broward County. Additionally, nest depth and sea turtle size increases the hatching and emergence success rates from females that are not too large or too small that nest in Broward County.
56

Investigating the Effect of Mechanical Beach Cleaning on Nesting, Hatching and Emergence Success of Loggerhead (Caretta caretta) and Green (Chelonia mydas) Sea Turtles in Broward County, Florida

Earney, Megan A 28 July 2017 (has links)
Sea turtles face many threats to their populations globally. Loggerhead sea turtles (Caretta caretta) and green sea turtles (Chelonia mydas) are listed by the International Union for the Conservation of Nature Red List as Endangered. In Florida, loggerhead and green sea turtles nest along the coastline during April-September. Mechanical beach cleaning is an aesthetic service performed daily on some beaches in Florida to clean the wrack line and/or the entire beach of debris. Alterations made to beaches by methods such as mechanical beach cleaning have the potential to impact sea turtle nesting, hatching, and emergence success. Generalized linear mixed models were performed to investigate the impacts of mechanical beach cleaning on nesting, hatching and emergence success of loggerhead and green turtles from 1997-2015 in Broward County, Florida. The results showed mechanical beach cleaning had an effect on nesting success, however, hatching and emergence success were not affected by mechanical beach cleaning. These results indicate that mechanical beach cleaning cannot solely be used to determine sea turtle management or conservation guidelines in Broward County.
57

Nest site fidelity and nest site selection of loggerhead, Caretta Caretta, and leatherback, dermochelys coriacea, turtles in KwaZulu-Natal, South Africa

Botha, Marié January 2010 (has links)
Loggerhead and leatherback sea turtles nest on the beaches of the north-eastern portion of Kwazulu-Natal within the iSimangaliso Wetland Park. Loggerheads place ~60 percent of all nests within an 8 km stretch of beach, whereas leatherbacks tend to space their nests more evenly along the entire length of the monitoring area. The study aimed to determine nest site fidelity of loggerheads and leatherbacks (using four decades of nesting data housed by Ezemvelo KZN Wildlife) and the factors that influence nest site selection of both species within the 56 km of turtle monitoring area (32N to 100S) and the 5 km area of high-density loggerhead nesting (0N to 12N). The effectiveness of nest site selection was then determined through the hatching success of loggerheads over the 5km area (0N to 12N). Results showed that loggerheads show a high degree of nest site fidelity (~3 km) with nest site fidelity of individuals increasing over subsequent seasons of nesting, as well as these individuals using the same stretches of beach for nesting (the most popular area being 1N to 4N for repeat nesters). Leatherbacks displayed nest site fidelity of ~9 km and this did not increase over successive seasons of nesting. In terms of nest site selection, loggerheads and leatherbacks both avoided areas where low shore rock was present, whereas both species preferred nesting on beaches of intermediate morphodynamic state. Leatherback nesting was significantly higher in areas with wider surf zones. Both species were able to surpass the high water mark when nesting as nests below this point would be almost certainly doomed. Hatching success of loggerheads was comparative to high (83 %) relative to other studies, however, nest success varied across the beach from beacon 1N to 12N. Areas where highest nest success was observed were not areas of highest nest density presumably due to artificial lighting. Results from this study increase our understanding of the evolutionary biology of loggerhead and leatherback turtles in South Africa and the effectiveness of loggerhead nest site selection through hatching success.
58

STAMM, un modèle individu-centré de la dispersion active des tortues marines juvéniles : applications aux cas des tortues luths du Pacifique Ouest et de l'Atlantique Nord-Ouest et aux tortues caouannes de l'ouest de l'océan Indien / STAMM, an individual based model for simulating the active dispersal of juvenile sea turtles : case studies on the western Pacific and the north-western Atlantic leatherback turtle populations and on the loggerhead turtle populations of the western Indian ocean

Lalire, Maxime 26 June 2017 (has links)
Les tortues marines, espèces emblématiques des écosystèmes marins, sont de plus en plus menacées par les effets directs et indirects des activités humaines. Leur cycle de vie est complexe, partagé entre divers habitats, souvent très éloignés les uns des autres. Leur conservation nécessite donc d'identifier les habitats occupés à chaque stade de vie et les routes migratoires empruntées entre ces différents habitats. Si l'écologie spatiale des tortues adultes est relativement bien connue, notamment grâce au suivi par satellite, il n'en va pas de même pour les juvéniles qui se développent plusieurs années en milieu pélagique sans pouvoir être suivis. Dans ce contexte, les simulations numériques constituent un outil adapté pour explorer la dispersion des tortues juvéniles à partir de leurs plages de naissance. Jusqu'à présent il a le plus souvent été supposé dans ces simulations que les juvéniles dérivaient passivement avec les courants marins. Dans ce travail de thèse nous présentons STAMM (Sea Turtle Active Movement Model), un nouveau modèle de dispersion active des tortues juvéniles qui s'attache à dépasser l'hypothèse initiale d'une dérive purement passive. Dans STAMM, les juvéniles simulés se déplacent sous l'influence de la circulation océanique et d'une nage motivée par la recherche d'habitats favorables. Ce modèle est appliqué ici à l'étude de la dispersion des juvéniles de trois populations de tortues marines : les tortues luths (Dermochelys coriacea) du Pacifique Ouest et de l'Atlantique Nord-Ouest puis les tortues caouannes (Caretta caretta) de l'ouest de l'océan Indien. Nos résultats montrent que, même si la circulation océanique détermine, à grande échelle, les zones de dispersion, la prise en compte des mouvements motivés par l'habitat augmente considérablement le réalisme des simulations et impacte profondément la distribution spatiale et temporelle des individus simulés à l'intérieur de leur zone de dispersion. Les mouvements motivés par l'habitat induisent notamment des migrations saisonnières en latitude qui réduisent la mortalité par hypothermie. Ces mouvements induisent également une concentration des individus simulés dans des zones productives (comme les upwellings de bord Est) inaccessibles en dérive passive. Ces résultats questionnent la vision classique des juvéniles circulant passivement autour des gyres océaniques et devraient rapidement être pris en compte pour la mise en place de mesures de conservation ciblées visant les tortues marines juvéniles. / Sea turtles are increasingly threatened by the direct and indirect effects of human activities. Their life cycle is complex, shared between various, and often very distant, habitats. Their conservation therefore requires identifying the habitats occupied at each stage of life and the migration routes between these different habitats. While the spatial ecology of adult turtles is relatively well known, particularly through satellite monitoring, the situation is not the same for juveniles which pelagic development phase remains largely unobserved. In that context, numerical simulation constitutes an appropriate tool to explore the dispersal of juvenile sea turtles from their natal beaches. Until now, simulations were mostly performed under the assumption that juveniles disperse passively with oceanic currents. In this PhD thesis we present STAMM (Sea Turtle Active Movement Model), a new model of active dispersal that aims to go beyond the initial hypothesis of passive drift. In STAMM, juvenile sea turtles move under the influence of ocean currents and swimming movements motivated by the search for favorable habitats. This model is applied here to the study of the dispersal of juveniles from three sea turtle populations: leatherback turtles (Dermochelys coriacea) of the Western Pacific and the Northwest Atlantic Oceans, and loggerhead turtles (Caretta caretta) of the Western Indian Ocean. Our results show that, although ocean currents broadly shape juvenile dispersal areas, simulations including habitat-driven movements provide more realistic results than passive drift simulations. Habitat-driven movements prove to deeply structure the spatial and temporal distribution of juveniles. In particular, they induce seasonal latitudinal migrations that reduce cold induce mortality. They also push simulated individuals to concentrate in productive areas that cannot be accessed through pure passive drift. These results challenge the classical view of juveniles circulating passively around oceanic gyres. They should rapidly be taken into account for the implementation of targeted conservation measures concerning juvenile sea turtles.
59

Environmental Factors Affecting Loggerhead Sea Turtle (Caretta caretta) Nesting, Hatching, and Incubation Patterns in Broward County, Florida

Best, Zoey Ellen 28 April 2017 (has links)
Reproductive success in loggerhead (Caretta caretta) sea turtles is strongly dependent on the effective placement and internal conditions of their nests. Embryos rely on optimal incubation conditions for proper development and growth, which determines how many hatchlings will emerge from the nest. The internal microclimate of each nest is delicately balanced and can be easily influenced by external environmental conditions. This study was designed to examine several environmental variables and determine their effects on sea turtle nesting numbers, hatching success, and incubation conditions in Broward County Florida. Over a span of 25 years (1991-2015), the Broward County Sea Turtle Conservation Program has collected data on each sea turtle nest laid in Broward County. This data was analyzed and plotted to visualize nesting and hatching trends, and regressions were fitted to make comparisons to historic air temperature, sea surface temperature, precipitation, and lunar illumination data. These regressions were tested for significance, and each environmental variable was found to have varying levels of impact on sea turtle nesting and hatching behavior. Of the environmental variables considered in this study, analyses suggest that sea turtles are most responsive to temperature, with sea surface temperature serving as the best proxy for predicting nesting behaviors. Air temperature over the incubation period was found to be the best indicator for hatch success percentage. Air temperature, sea surface temperature, and precipitation averages all significantly affected the length of the incubation period. The regression models created in this study could be used to examine the interactions between climatic variables, and to indicate what impacts can be expected by these various environmental factors. This information could be used to estimate the future effects of climate change on sea turtle reproduction, and to predict general reproductive success and future population trends.
60

Predicting leatherback sea turtle sex ratios using spatial interpolation of nesting beach temperatures

Unknown Date (has links)
Sex determination in leatherback sea turtles is directed primarily by the temperatures a clutch experiences during the middle third of development. Warmer temperatures tend to produce females will cooler temperatures yield males. Nest temperatures can vary spatially and temporally. During the 2010 and 2011 nesting seasons, this study estimated the hatchling sex ratio of leatherback sea turtles on Sandy Point National Wildlife Refuge (SPNWR), St. Croix, U.S. Virgin Islands. I measured sand temperatures from May- August and across the spatial range of leatherback nesting habitat. I spatially interpolated those temperatures to create maps that predicted temperatures for all nests incubating on SPWNR. Nest temperatures were also directly measured and compared with predicted nest temperatures to validate the prediction model. Sexes of dead-in-nest hatchlings and full term embryos were used to confirm the sex-temperature response. The model showed that microclimatic variation likely impacts the production of both sexes on SPNWR. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2013.

Page generated in 0.2469 seconds