Spelling suggestions: "subject:"loses channel systems""
1 |
Modèles stochastiques pour les pertes de messages dans les protocoles asynchrones, et techniques de vérification automatiqueBertrand, Nathalie 06 October 2006 (has links) (PDF)
Les protocoles de communication asynchrones sont naturellement modélisés par des automates communicants via des canaux FIFO non bornés. Dans cette thèse nous nous intéressons aux variantes des Lossy Channel Systems pour lesquelles les pertes de messages dans les canaux sont probabilistes. Plus précisément, on considère des sémantiques sous forme de chaînes de Markov et de processus de décision markoviens. Un théorème général de convergence de points fixes dans les systèmes de transition bien structurés, permet de prouver pour les PLCS et NPLCS de nombreux résultats de décidabilité pour la vérification de propriétés du temps linéaire. Nous donnons également les limites des modèles par l'intermédiaire de résultats d'indécidabilité. Un prototype a fait l'objet de l'implémentation des algorithmes développés dans la thèse. Malgré la grande complexité des problèmes cet outil a permis de prouver des propriétés de vivacité sur des protocoles tels que le Bit Alterné et le protocole de Pachl.
|
2 |
On Post’s embedding problem and the complexity of lossy channels / Du problème de sous mot de Post et de la complexité des canaux non fiablesChambart, Pierre 29 September 2011 (has links)
Les systèmes à canaux non fiables ont été introduits à l'origine comme un modèle de communication. Ils ont donné naissance à une classe de complexité restée mal comprise pendant longtemps. Dans cette thèse, nous étudions et comblons certaines des plus importantes lacunes dans la connaissance de cette classe. Nous fournissons entre autres des bornes inférieure et supérieure qui se rejoignent pour la complexité en temps. Puis nous proposons un nouvel outil de preuve : le Problème de Sous Mot de Post (PEP). C'est un problème simple, inspiré du Problème de Correspondance de Post, et complet pour cette classe de complexité. Nous étudions ensuite PEP et ses variantes, ainsi que les langages de solutions de PEP sur lesquels nous avons fourni des résultats de complexité et des outils de preuve tels que des lemmes de pompage. / Lossy channel systems were originally introduced to model communication protocols. It gave birth to a complexity class wich remained scarcely undersood for a long time. In this thesis we study some of the most important gaps. In particular, we bring matching upper and lower bounds for the time complexity. Then we describe a new proof tool : the Post Embedding Problem (PEP) which is a simple problem, closely related to the Post Correspondence Problem, and complete for this complexity class. Finally, we study PEP, its variants and the languages of solutions of PEP on which we provide complexity results and proof tools like pumping lemmas.
|
3 |
Coverability and Expressiveness Properties of Well-structured Transition SystemsGeeraerts, Gilles 20 April 2007 (has links)
Ces cinquante dernières annéees, les ordinateurs ont occupé une place toujours plus importante dans notre vie quotidienne. On les retrouve aujourd’hui présents dans de nombreuses applications, sous forme de systèmes enfouis. Ces applications sont parfois critiques, dans la mesure où toute défaillance du système informatique peut avoir des conséquences catastrophiques, tant sur le plan humain que sur le plan économique.
Nous pensons par exemple aux systèmes informatiques qui contrôlent les appareils médicaux ou certains systèmes vitaux (comme les freins) des véhicules automobiles.
Afin d’assurer la correction de ces systèmes informatiques, différentes techniques de vérification Assistée par Ordinateur ont été proposées, durant les trois dernières
décennies principalement. Ces techniques reposent sur un principe commun: donner une description formelle tant du système que de la propriété qu’il doit respecter, et appliquer une méthode automatique pour prouver que le système respecte la propriété.
Parmi les principaux modèles aptes à décrire formellement des systèmes informatiques, la classe des systèmes de transition bien structurés [ACJT96, FS01] occupe une place importante, et ce, pour deux raisons essentielles. Tout d’abord, cette classe généralise plusieurs autres classes bien étudiées et utiles de modèles à espace
d’états infini, comme les réseaux de Petri [Pet62](et leurs extensions monotones [Cia94, FGRVB06]) ou les systèmes communiquant par canaux FIFO avec pertes [AJ93]. Ensuite, des problèmes intéressants peuvent être résolus algorithmiquement sur cette classe. Parmi ces problèmes, on trouve le probléme de couverture, auquel certaines propriétés intéressantes de sûreté peuvent être réduites.
Dans la première partie de cette thèse, nous nous intéressons au problème de couverture. Jusqu’à présent, le seul algorithme général (c’est-à-dire applicable à n’importe quel système bien structuré) pour résoudre ce problème était un algorithme dit en arrière [ACJT96] car il calcule itérativement tous les états potentiellement non-sûrs et vérifie si l’état initial du système en fait partie. Nous proposons Expand, Enlarge and Check, le premier algorithme en avant pour résoudre le problème de couverture, qui calcule les états potentiellement accessibles du système et vérifie si certains d’entre eux sont non-sûrs. Cette approche est plus efficace en pratique, comme le montrent nos expériences. Nous présentons également des techniques permettant d’accroître l’efficacité de notre méthode dans le cas où nous analysons des réseaux de Petri (ou
une de leurs extensions monotones), ou bien des systèmes communiquant par canaux FIFO avec pertes. Enfin, nous nous intéressons au calcul de l’ensemble de couverture pour les réseaux de Petri, un objet mathématique permettant notamment de résoudre le problème de couverture. Nous étudions l’algorithme de Karp & Miller [KM69], une solution classique pour calculer cet ensemble. Nous montrons qu’une optimisation de cet algorithme présenté dans [Fin91] est fausse, et nous proposons une autre solution totalement neuve, et plus efficace que la solution de Karp & Miller.
Dans la seconde partie de la thèse, nous nous intéressons aux pouvoirs d’expression des systèmes bien structurés, tant en terme de mots infinis que de mots finis. Le pouvoir d’expression d’une classe de systèmes est, en quelque sorte, une mesure de la diversité des comportements que les modèles de cette classe peuvent représenter. En ce qui concerne les mots infinis, nous étudions les pouvoirs d’expression des réseaux de Petri et de deux de leurs extensions (les réseaux de Petri avec arcs non-bloquants et les réseaux de Petri avec arcs de transfert). Nous montrons qu’il existe une hiérarchie stricte entre ces différents pouvoirs d’expression. Nous obtenons également des résultats partiels concernant le pouvoir d’expression des réseaux de Petri avec arcs de réinitialisation. En ce qui concerne les mots finis, nous introduisons la classe des langages bien structurés, qui sont des langages acceptés par des systèmes de transition bien structurés étiquettés, où l’ensemble des états accepteurs est clos par le haut. Nous prouvons trois lemmes de pompage concernant ces langages. Ceux-ci nous permettent de réobtenir facilement des résultats classiques de la littérature, ainsi que plusieurs nouveaux résultats. En particulier, nous prouvons, comme dans le cas des mots infinis, qu’il existe une hiérarchie stricte entre les pouvoirs d’expression des extensions des réseaux de Petri considérées.
|
4 |
On Post's embedding problem and the complexity of lossy channelsChambart, Pierre 29 September 2011 (has links) (PDF)
Lossy channel systems were originally introduced to model communication protocols. It gave birth to a complexity class wich remained scarcely undersood for a long time. In this thesis we study some of the most important gaps. In particular, we bring matching upper and lower bounds for the time complexity. Then we describe a new proof tool : the Post Embedding Problem (PEP) which is a simple problem, closely related to the Post Correspondence Problem, and complete for this complexity class. Finally, we study PEP, its variants and the languages of solutions of PEP on which we provide complexity results and proof tools like pumping lemmas.
|
5 |
Games and Probabilistic Infinite-State SystemsSandberg, Sven January 2007 (has links)
<p>Computer programs keep finding their ways into new safety-critical applications, while at the same time growing more complex. This calls for new and better methods to verify the correctness of software. We focus on one approach to verifying systems, namely that of <i>model checking</i>. At first, we investigate two categories of problems related to model checking: <i>games</i> and <i>stochastic infinite-state systems</i>. In the end, we join these two lines of research, by studying <i>stochastic infinite-state games</i>.</p><p>Game theory has been used in verification for a long time. We focus on finite-state 2-player parity and limit-average (mean payoff) games. These problems have applications in model checking for the <i>μ</i>-calculus, one of the most expressive logics for programs. We give a simplified proof of memoryless determinacy. The proof applies <i>both</i> to parity and limit-average games. Moreover, we suggest a strategy improvement algorithm for limit-average games. The algorithm is discrete and strongly subexponential.</p><p>We also consider probabilistic infinite-state systems (Markov chains) induced by three types of models. <i>Lossy channel systems (LCS)</i> have been used to model processes that communicate over an unreliable medium. <i>Petri nets</i> model systems with unboundedly many parallel processes. <i>Noisy Turing machines</i> can model computers where the memory may be corrupted in a stochastic manner. We introduce the notion of <i>eagerness</i> and prove that all these systems are eager. We give a scheme to approximate the value of a reward function defined on paths. Eagerness allows us to prove that the scheme terminates. For probabilistic LCS, we also give an algorithm that approximates the limit-average reward. This quantity describes the long-run behavior of the system.</p><p>Finally, we investigate Büchi games on probabilistic LCS. Such games can be used to model a malicious cracker trying to break a network protocol. We give an algorithm to solve these games.</p>
|
6 |
Games and Probabilistic Infinite-State SystemsSandberg, Sven January 2007 (has links)
Computer programs keep finding their ways into new safety-critical applications, while at the same time growing more complex. This calls for new and better methods to verify the correctness of software. We focus on one approach to verifying systems, namely that of model checking. At first, we investigate two categories of problems related to model checking: games and stochastic infinite-state systems. In the end, we join these two lines of research, by studying stochastic infinite-state games. Game theory has been used in verification for a long time. We focus on finite-state 2-player parity and limit-average (mean payoff) games. These problems have applications in model checking for the μ-calculus, one of the most expressive logics for programs. We give a simplified proof of memoryless determinacy. The proof applies both to parity and limit-average games. Moreover, we suggest a strategy improvement algorithm for limit-average games. The algorithm is discrete and strongly subexponential. We also consider probabilistic infinite-state systems (Markov chains) induced by three types of models. Lossy channel systems (LCS) have been used to model processes that communicate over an unreliable medium. Petri nets model systems with unboundedly many parallel processes. Noisy Turing machines can model computers where the memory may be corrupted in a stochastic manner. We introduce the notion of eagerness and prove that all these systems are eager. We give a scheme to approximate the value of a reward function defined on paths. Eagerness allows us to prove that the scheme terminates. For probabilistic LCS, we also give an algorithm that approximates the limit-average reward. This quantity describes the long-run behavior of the system. Finally, we investigate Büchi games on probabilistic LCS. Such games can be used to model a malicious cracker trying to break a network protocol. We give an algorithm to solve these games.
|
7 |
Coverability and expressiveness properties of well-structured transition systemsGeeraerts, Gilles 20 April 2007 (has links)
Ces cinquante dernières annéees, les ordinateurs ont occupé une place toujours plus importante dans notre vie quotidienne. On les retrouve aujourd’hui présents dans de nombreuses applications, sous forme de systèmes enfouis. Ces applications sont parfois critiques, dans la mesure où toute défaillance du système informatique peut avoir des conséquences catastrophiques, tant sur le plan humain que sur le plan économique. <p>Nous pensons par exemple aux systèmes informatiques qui contrôlent les appareils médicaux ou certains systèmes vitaux (comme les freins) des véhicules automobiles. <p>Afin d’assurer la correction de ces systèmes informatiques, différentes techniques de vérification Assistée par Ordinateur ont été proposées, durant les trois dernières <p>décennies principalement. Ces techniques reposent sur un principe commun: donner une description formelle tant du système que de la propriété qu’il doit respecter, et appliquer une méthode automatique pour prouver que le système respecte la propriété. <p>Parmi les principaux modèles aptes à décrire formellement des systèmes informatiques, la classe des systèmes de transition bien structurés [ACJT96, FS01] occupe une place importante, et ce, pour deux raisons essentielles. Tout d’abord, cette classe généralise plusieurs autres classes bien étudiées et utiles de modèles à espace <p>d’états infini, comme les réseaux de Petri [Pet62](et leurs extensions monotones [Cia94, FGRVB06]) ou les systèmes communiquant par canaux FIFO avec pertes [AJ93]. Ensuite, des problèmes intéressants peuvent être résolus algorithmiquement sur cette classe. Parmi ces problèmes, on trouve le probléme de couverture, auquel certaines propriétés intéressantes de sûreté peuvent être réduites. <p>Dans la première partie de cette thèse, nous nous intéressons au problème de couverture. Jusqu’à présent, le seul algorithme général (c’est-à-dire applicable à n’importe quel système bien structuré) pour résoudre ce problème était un algorithme dit en arrière [ACJT96] car il calcule itérativement tous les états potentiellement non-sûrs et vérifie si l’état initial du système en fait partie. Nous proposons Expand, Enlarge and Check, le premier algorithme en avant pour résoudre le problème de couverture, qui calcule les états potentiellement accessibles du système et vérifie si certains d’entre eux sont non-sûrs. Cette approche est plus efficace en pratique, comme le montrent nos expériences. Nous présentons également des techniques permettant d’accroître l’efficacité de notre méthode dans le cas où nous analysons des réseaux de Petri (ou <p>une de leurs extensions monotones), ou bien des systèmes communiquant par canaux FIFO avec pertes. Enfin, nous nous intéressons au calcul de l’ensemble de couverture pour les réseaux de Petri, un objet mathématique permettant notamment de résoudre le problème de couverture. Nous étudions l’algorithme de Karp & Miller [KM69], une solution classique pour calculer cet ensemble. Nous montrons qu’une optimisation de cet algorithme présenté dans [Fin91] est fausse, et nous proposons une autre solution totalement neuve, et plus efficace que la solution de Karp & Miller. <p>Dans la seconde partie de la thèse, nous nous intéressons aux pouvoirs d’expression des systèmes bien structurés, tant en terme de mots infinis que de mots finis. Le pouvoir d’expression d’une classe de systèmes est, en quelque sorte, une mesure de la diversité des comportements que les modèles de cette classe peuvent représenter. En ce qui concerne les mots infinis, nous étudions les pouvoirs d’expression des réseaux de Petri et de deux de leurs extensions (les réseaux de Petri avec arcs non-bloquants et les réseaux de Petri avec arcs de transfert). Nous montrons qu’il existe une hiérarchie stricte entre ces différents pouvoirs d’expression. Nous obtenons également des résultats partiels concernant le pouvoir d’expression des réseaux de Petri avec arcs de réinitialisation. En ce qui concerne les mots finis, nous introduisons la classe des langages bien structurés, qui sont des langages acceptés par des systèmes de transition bien structurés étiquettés, où l’ensemble des états accepteurs est clos par le haut. Nous prouvons trois lemmes de pompage concernant ces langages. Ceux-ci nous permettent de réobtenir facilement des résultats classiques de la littérature, ainsi que plusieurs nouveaux résultats. En particulier, nous prouvons, comme dans le cas des mots infinis, qu’il existe une hiérarchie stricte entre les pouvoirs d’expression des extensions des réseaux de Petri considérées. / Doctorat en sciences, Spécialisation Informatique / info:eu-repo/semantics/nonPublished
|
Page generated in 0.0532 seconds