• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mesoscale dynamics and boundary-layer structure in topographically forced low-level jets

Söderberg, Stefan January 2004 (has links)
<p>Two types of mesoscale wind-speed jet and their effects on boundary-layer structure were studied. The first is a coastal jet off the northern California coast, and the second is a katabatic jet over Vatnajökull, Iceland. Coastal regions are highly populated, and studies of coastal meteorology are of general interest for environmental protection, fishing industry, and for air and sea transportation. Not so many people live in direct contact with glaciers but properties of katabatic flows are important for understanding glacier response to climatic changes. Hence, the two jets can potentially influence a vast number of people.</p><p>Flow response to terrain forcing, transient behavior in time and space, and adherence to simplified theoretical models were examined. The turbulence structure in these stably stratified boundary layers was also investigated. Numerical modeling is the main tool in this thesis; observations are used primarily to ensure a realistic model behavior.</p><p>Simple shallow-water theory provides a useful framework for analyzing high-velocity flows along mountainous coastlines, but for an unexpected reason. Waves are trapped in the inversion by the curvature of the wind-speed profile, rather than by an infinite stability in the inversion separating two neutral layers, as assumed in the theory. In the absence of blocking terrain, observations of steady-state supercritical flows are not likely, due to the diurnal variation of flow criticality.</p><p>In many simplified models, non-local processes are neglected. In the flows studied here, we showed that this is not always a valid approximation. Discrepancies between simulated katabatic flow and that predicted by an analytical model are hypothesized to be due to non-local effects, such as surface inhomogeneity and slope geometry, neglected in the theory. On a different scale, a reason for variations in the shape of local similarity scaling functions between studies is suggested to be differences in non-local contributions to the velocity variance budgets.</p>
2

Mesoscale dynamics and boundary-layer structure in topographically forced low-level jets

Söderberg, Stefan January 2004 (has links)
Two types of mesoscale wind-speed jet and their effects on boundary-layer structure were studied. The first is a coastal jet off the northern California coast, and the second is a katabatic jet over Vatnajökull, Iceland. Coastal regions are highly populated, and studies of coastal meteorology are of general interest for environmental protection, fishing industry, and for air and sea transportation. Not so many people live in direct contact with glaciers but properties of katabatic flows are important for understanding glacier response to climatic changes. Hence, the two jets can potentially influence a vast number of people. Flow response to terrain forcing, transient behavior in time and space, and adherence to simplified theoretical models were examined. The turbulence structure in these stably stratified boundary layers was also investigated. Numerical modeling is the main tool in this thesis; observations are used primarily to ensure a realistic model behavior. Simple shallow-water theory provides a useful framework for analyzing high-velocity flows along mountainous coastlines, but for an unexpected reason. Waves are trapped in the inversion by the curvature of the wind-speed profile, rather than by an infinite stability in the inversion separating two neutral layers, as assumed in the theory. In the absence of blocking terrain, observations of steady-state supercritical flows are not likely, due to the diurnal variation of flow criticality. In many simplified models, non-local processes are neglected. In the flows studied here, we showed that this is not always a valid approximation. Discrepancies between simulated katabatic flow and that predicted by an analytical model are hypothesized to be due to non-local effects, such as surface inhomogeneity and slope geometry, neglected in the theory. On a different scale, a reason for variations in the shape of local similarity scaling functions between studies is suggested to be differences in non-local contributions to the velocity variance budgets.
3

Near surface atmospheric flow over high latitude glaciers

Parmhed, Oskar January 2004 (has links)
<p>In this thesis various descriptions of the near surface atmospheric flow over a high latitude glacier is used in an effort to increase our understanding of the basic flow dynamics there.</p><p>Through their contribution to sea-level change, mountain glaciers play a significant role in Earth’s climate system. Properties of the near surface atmospheric flow are important for understanding glacier response to climate change.</p><p>Here, the near surface atmospheric flow is studied from several perspectives including the effects of both rotation and slope. Rotation is an important aspect of most atmospheric flows and its significance for mesoscale flows have gained recognition over the last years. Similarly, the very stable boundary layer (VSBL) has lately gained interest. Within a VSBL over sloping terrain katabatic flow is known to be usual and persistent. For the present thesis a combination of numerical and simple analytical models as well as observations from the Vatnajökull glacier on Iceland have been used. The models have continuously been compared to available observations. Three different approaches have been used: linear wave modeling, analytic modeling of katabatic flow and of the Ekman layer, and numerical simulations of the katabatic flow using a state of the art mesoscale model. The analytic models for the katabatic flow and the Ekman layer used in this thesis both utilizes the WKB method to allow the eddy diffusivity to vary with height. This considerably improves the results of the models. Among other findings it is concluded that: a large part of the flow can be explained by linear theory, that good results can be obtained for surface energy flux using simple models, and that the very simple analytic models for the katabatic flow and the Ekman layer can perform adequately if the restraint of constant eddy diffusivity is relieved.</p>
4

Near surface atmospheric flow over high latitude glaciers

Parmhed, Oskar January 2004 (has links)
In this thesis various descriptions of the near surface atmospheric flow over a high latitude glacier is used in an effort to increase our understanding of the basic flow dynamics there. Through their contribution to sea-level change, mountain glaciers play a significant role in Earth’s climate system. Properties of the near surface atmospheric flow are important for understanding glacier response to climate change. Here, the near surface atmospheric flow is studied from several perspectives including the effects of both rotation and slope. Rotation is an important aspect of most atmospheric flows and its significance for mesoscale flows have gained recognition over the last years. Similarly, the very stable boundary layer (VSBL) has lately gained interest. Within a VSBL over sloping terrain katabatic flow is known to be usual and persistent. For the present thesis a combination of numerical and simple analytical models as well as observations from the Vatnajökull glacier on Iceland have been used. The models have continuously been compared to available observations. Three different approaches have been used: linear wave modeling, analytic modeling of katabatic flow and of the Ekman layer, and numerical simulations of the katabatic flow using a state of the art mesoscale model. The analytic models for the katabatic flow and the Ekman layer used in this thesis both utilizes the WKB method to allow the eddy diffusivity to vary with height. This considerably improves the results of the models. Among other findings it is concluded that: a large part of the flow can be explained by linear theory, that good results can be obtained for surface energy flux using simple models, and that the very simple analytic models for the katabatic flow and the Ekman layer can perform adequately if the restraint of constant eddy diffusivity is relieved.
5

Variabilidade em escala associada com jatos de baixo nível e ondas de gravidade na camada limite noturna do Pantanal / Scale variability associated with low-level jets and gravity waves in the nocturnal boundary layer in Pantanal

Martins, Hardiney dos Santos 22 August 2011 (has links)
The Nocturnal Boundary Layer (NBL) turbulent structure above Pantanal Mato-Grossense, under the influence of low-level jets (LLJ) and gravity waves (GW), is investigated. Experimental data obtained during the Interdisciplinary Pantanal Experiment (IPE) dry season (IPE-2), and wet season (IPE-3), carried out between 07th and 22th September, 1999, and 16th and 28th February, 2002, respectively, according to database from Universidade Federal do Mato Grosso, city of Corumbá. Radiosonde data have been used to identify LLJ presence and classify them as: type 1 LLJ (jet associated to the sheltering surface) and type-2 LLJ (jet which causes upside-down mixture). In addition to the radiosonde data, fast response data (wind velocity components, temperature and humidity), measured from a 25m high micrometeorological tower, at 16Hz (IPE- 2) and 8Hz (IPE-3) samples were used. These fast response data were then decomposed in time and scale via Wavelet Transform (WT), with complex Morlet mother wavelet. From the phase difference between the wind velocity s vertical component (w) and temperature (T), obtained through wavelet s cross spectrum, the presence of GW (phase difference near to 90º criterion) were detected. The next step was to establish categories to analyse Pantanal NBL characteristic state phenomena, which were based on LLJ, GW and length groups of occurrence. Such groups are: type 1 LLJ, type 2 LLJ, no LLJ, with GW and no GW. From the amount of data of each group, statistic parameters (variance, skewness, adimensional kurtosis, correlation coefficients and covariances) were estimated by scale, in order to investigate the Pantanal NBL turbulence structure and its variability in scale under the action of each of these groups. It was noticed that, above all groups, type 1 LLJ is the most global intermittence provocative forcing in all micrometeorological series of data in Pantanal. On the other hand, type 2 LLJ is the less global intermittence provocative forcing. With GW group shows an intermediate behavior between groups type 1 LLJ and type 2 LLJ when considering global intermittence promotion. The length scales 0.4m to 5000m were resolved in this study. It was also noticed that Pantanal NBL shows two scale bands with remarkable different characteristics due to predominant distinct forcings in it. For the first length scale band it prevails a mechanical force in the statistical parameters behavior, to all groups and in both seasons. For the second length scale band it prevents the action of buoyancy forces and mesoscale effects in the statistical parameters behavior in Pantanal. As a result, it predominate stable conditions in the dry season; in the wet season, however, NBL may present as a slightly unstable layer, due to a bigger water heat capacity and its ability to behave as a energy sink during the day and heat source during the night. The early evening transition period clearly shows a stable behavior to the dry season and unstable to the wet season. / Investiga-se a estrutura da turbulência na Camada Limite Noturna (CLN) acima do Pantanal Mato-Grossense sob a influência de jatos de baixo nível (JBN s) e ondas de gravidade (OG s). Os dados experimentais são provenientes do Experimento Interdisciplinar do Pantanal (IPE), na estação seca (IPE-2), realizado no período entre 07 e 22 de Setembro de 1999, e na estação inundada (IPE-3), realizado no período entre 16 e 28 de Fevereiro de 2002, na base de estudos da Universidade Federal do Mato Grosso do Sul, no município de Corumbá. Utilizaram-se dados de radiossondagens para identificar a presença e classificar os JBN s como: JBN tipo 1 (jato associado à blindagem da superfície) e JBN tipo 2 (jato que promove mistura de cima para baixo). Além dos dados de radiossondagem, utilizaram-se dados de resposta rápida (componentes da velocidade do vento, temperatura e umidade) medidos em torre micrometeorológica de 25m de altura a uma taxa de amostragem de 16Hz (IPE-2) e 8Hz (IPE-3). Os dados de resposta rápida foram decompostos em tempo e escala via Transformada em Ondeletas (TO), com ondeleta-mãe complexa de Morlet. A partir da diferença de fase entre a componente vertical da velocidade do vento (w) e temperatura (T), obtida através do espectro cruzado de ondeleta, detectou-se a presença de OG s (critério de diferenças de fase próximas de 90º).A partir disso estabeleceram-se categorias para análise de fenômenos característicos do estado da CLN pantaneira, as quais, se basearam em classes de ocorrência de JBN, de OG e duração das mesmas. As classes são: com JBN tipo 1, com JBN tipo 2, sem JBN, com OG e sem OG. A partir do conjunto de dados de cada classe, foram estimados parâmetros estatísticos (variâncias, skewnesses, curtoses adimensionais, coeficientes de correlação e covariâncias), por escala, para investigar a estrutura da turbulência na CLN do Pantanal e sua variabilidade em escala sob a ação de cada uma dessas classes. Observouse que o JBN tipo 1, entre todas as classes, é o forçante que mais promove intermitência global nas séries de dados micrometeorológicos do Pantanal. Por outro lado, a classe JBN tipo 2 é o forçante que menos promove intermitência global. A classe com OG apresenta um comportamento intermediário entre as classes JBN tipo 1 e JBN tipo 2 na promoção de intermitência global. Foram resolvidas escalas de comprimento de 0,4m até 5000m. Observou-se, também, que a CLN do Pantanal apresenta duas bandas de escalas com características marcadamente diferentes devido aos forçantes distintos predominantes nas mesmas. Para a primeira banda de escalas de comprimento predomina a ação mecânica no comportamento dos parâmetros estatísticos, para todas as classes e nas duas estações. Para a segunda banda de escalas de comprimento predomina a ação das forças de flutuabilidade e efeitos de mesoescala no comportamento dos parâmetros estatísticos no Pantanal. Como consequência disto, na estação seca predominam condições estáveis e na estação inundada, a CLN pode apresentar-se como uma camada levemente instável, devido a maior capacidade térmica da água e de sua capacidade de comportar-se como sumidouro de energia durante o dia e fonte de calor durante a noite. O período de transição tarde-noite demonstra claramente um comportamento estável para a estação seca e instável para a estação inundada.
6

EFFECTS OF INLET CONDITIONS, TURBINE DESIGN, AND NON-FLAT TOPOGRAPHY ON THE WAKE OF SCALED-DOWN WIND TURBINES

Diego Andres Siguenza Alvarado (16507221) 07 July 2023 (has links)
<p>This work is a five-article-based collection of published and to-be-published research articles that explore a novel combination of inlet conditions, wind turbine design, and non-flat topography by performing scaled-down experiments in a wind tunnel.</p>
7

Insights Into Wind Profile Characteristics in the Arctic Marine Boundary Layer / Inblick i vindprofilens egenskaper i det Arktiska marina gränsskiktet

Gausa, Charlotte Sophie January 2024 (has links)
The atmospheric boundary layer in the Arctic is essential for the understanding of climate change and improving regional weather prediction. The aim of this study is to investigate to which degree wind speed profiles retrieved in the Arctic agree with well known wind profile concepts and understand which local impact factors influence the wind speed profile. As part of the Nansen Legacy project, scientists from the University Centre in Svalbard and the University of Bergen installed two wind lidars onboard the research vessel “Kronprins Haakon” during the “Winter Process Cruise” in February 2021. Wind speed profiles were collected over a period of two weeks. They were manually classified into three categories based on their shape. The ideally shaped profiles were fitted against the wind profile power law to identify the exponent, α, for use in the Arctic marine boundary layer. α was found to be 4-5 times smaller than the conventionally applied α = 1/7 for profiles retrieved over open water, which was associated with unstable atmospheric conditions. Additionally, α was found to be considerably larger than 1/7 when sea ice was present, which was associated with stable conditions. A dependency on wind speed was also found. These results underline the importance of adjusting the exponent in order to ac- curately model the wind speed in the Arctic marine boundary layer. The results might be important for optimizing potential wind energy production, which is of great interest with the increasing human activ- ity in the Arctic. Reversed profiles (wind speed maxima closest to the surface) were mainly measured over open ocean and during low wind speeds and were speculated to be related to swell conditions. Pro- files containing a maxima in low levels were primarily measured during stable atmospheric conditions when sea ice was present. Future research in Arctic conditions would benefit from extending wind speed measurements to even lower levels and including stability measurements for an even deeper analysis.

Page generated in 0.0789 seconds