• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Antigenic and Genetic Evolution of Emerging Avian Origin Influenza A Viruses

Xu, Yifei 09 December 2016 (has links)
Periodic introductions of influenza A viruses (IAVs) from wild birds contribute to emergence of novel strains that infect domestic poultry, lower mammals, and humans, but the mechanisms of emergence are unclear. The objectives of this dissertation research are to infer the genesis of two emerging IAVs, low pathogenic avian influenza (LPAI) H10N8 and highly pathogenic avian influenza (HPAI) H7N8 viruses, and to characterize the antigenic diversity and genetic evolution of contemporary H7 avian influenza viruses (AIVs) from North America. First, AIVs that are genetically close to the human H10N8 isolate were recovered at the live poultry market (LPM) visited by the first H10N8 patient. High seroprevalence of H10 virus was observed in ducks and chickens from five LPMs in the region. These findings suggested that LPM was the most probable source of human infection with the H10N8 virus, and this virus appeared to be present throughout the LPM system in the city. Second, the novel H7N8 virus most likely circulated among diving ducks in the Mississippi flyway during autumn 2015 and was subsequently introduced to Indiana turkey, in which it evolved from LPAI into HPAI. H4N8 IAVs from diving ducks possess a gene constellation comprising five H7N8–like gene segments. These findings suggest that viral gene constellations circulating among diving ducks could contribute towards the emergence of IAVs that can affect poultry. Diving ducks may serve as a unique reservoir, contributing to the maintenance, diversification, and transmission of IAVs in wild birds. Third, antigenic and genetic characterization of 93 H7 AIVs from North America showed limited antigenic diversity. Gradual accumulation of nucleotide and amino acid substitutions in the H7 gene of AIVs from wild and domestic birds caused a wide genetic diversity. These findings suggested that continuous genetic evolution has not led to significant antigenic diversity for contemporary H7 AIVs isolated from wild and domestic birds in North America. In summary, these findings not only improve our understanding of the ecology and evolution of IAVs but also provide information for formulation of effective disease prevention and control strategies.
2

Etude de la transmission du virus influenza au sein de populations d'Anatidae / The transmission of avian influenza virus inside an anatidea population

Mamlouk, Aymen 20 December 2011 (has links)
Les virus influenza A ont suscité à partir de l’année 1997 un intérêtsanitaire et économique mondial considérable après l’émergence d’une formehautement pathogène d’un virus influenza aviaire H5N1. Cette épizootie a misen évidence le danger majeur que constitue la proximité entre espècessensibles sauvages et domestiques. En effet, pouvant présenter lescaractéristiques de réservoirs de ces virus, les canards étaient les plussoupçonnés de transmettre l’infection, grâce à une pratique migratoireimportante et d’un portage asymptomatique fréquent. Ce portage associe dans la plupart des cas des virus faiblement pathogènesde sous-types multiples. Ces virus peuvent se transmettre aux volaillesdomestiques et émerger en épizootie à virus hautement pathogène dans le casparticulier des sous-types H5 et H7. Ces épizooties peuvent avoir desconséquences économiques considérables, avec une mortalité avoisinant les100%, et sanitaire avec un possible passage à l’homme. Notre projet vise à caractériser l’infection et la transmission des virusinfluenza faiblement pathogènes, après inoculation expérimentale à unepopulation de canards de surface et plongeurs. Il répond également à lanécessité d’établir des méthodes de surveillance des virus influenzaaviaires à l’arrivé des oiseaux migrateurs dans des zones humides à richepatrimoine ornithologique, et situées à proximité de régions à fortpotentiel en matière de production avicole (La Dombes comme exemple). / Since 1997, influenza A viruses has given rise to great sanitary andeconomic interest after the emergence of a highly pathogenic subtype ofavian influenza virus H5N1. This epizooty underlined the threat that couldbe the closeness of wild and domestic birds. Ducks which were actuallyshowing reservoirs characteristics were suspected to pass on the virusthanks to their migratory habits and asymptomatic porterage.This porterage mostly involves low pathogenic viruses of numerous subtypes.Those viruses could be transmitted to domestic poultries and emerge, in thecase of H5 and H7 subtypes, in a viral highly pathogenic epizooty. Thoseepizooties may have major economic (average 100% mortality) and sanitary(possible transmission to humans) consequences.Our study aims to characterize the infection and the transmission of lowpathogenic avian influenza viruses, after experimental inoculation tosurface and diving ducks. It suggests setting up epidemiologic surveillancemethods of avian influenza viruses after the arrival of migratory birds inmost important wetlands, which are close to major poultry breeding regions(The Dombes for instance).
3

Insertion of Basic Amino Acids in the Hemagglutinin Cleavage Site of H4N2 Avian Influenza Virus (AIV)—Reduced Virus Fitness in Chickens is Restored by Reassortment with Highly Pathogenic H5N1 AIV

Gischke, Marcel, Ulrich, Reiner, Fatola, Olanrewaju I., Scheibner, David, Salaheldin, Ahmed H., Crossley, Beate, Böttcher-Friebertshäuser, Eva, Veits, Jutta, Mettenleiter, Thomas C., Abdelwhab, Elsayed M. 01 February 2024 (has links)
Highly pathogenic (HP) avian influenza viruses (AIVs) are naturally restricted to H5 and H7 subtypes with a polybasic cleavage site (CS) in hemagglutinin (HA) and any AIV with an intravenous pathogenicity index (IVPI) ≥ 1.2. Although only a few non-H5/H7 viruses fulfill the criteria of HPAIV; it remains unclear why these viruses did not spread in domestic birds. In 2012, a unique H4N2 virus with a polybasic CS 322PEKRRTR/G329 was isolated from quails in California which, however, was avirulent in chickens. This is the only known non-H5/H7 virus with four basic amino acids in the HACS. Here, we investigated the virulence of this virus in chickens after expansion of the polybasic CS by substitution of T327R (322PEKRRRR/G329) or T327K (322PEKRRKR/G329) with or without reassortment with HPAIV H5N1 and H7N7. The impact of single mutations or reassortment on virus fitness in vitro and in vivo was studied. Efficient cell culture replication of T327R/K carrying H4N2 viruses increased by treatment with trypsin, particularly in MDCK cells, and reassortment with HPAIV H5N1. Replication, virus excretion and bird-to-bird transmission of H4N2 was remarkably compromised by the CS mutations, but restored after reassortment with HPAIV H5N1, although not with HPAIV H7N7. Viruses carrying the H4-HA with or without R327 or K327 mutations and the other seven gene segments from HPAIV H5N1 exhibited high virulence and efficient transmission in chickens. Together, increasing the number of basic amino acids in the H4N2 HACS was detrimental for viral fitness particularly in vivo but compensated by reassortment with HPAIV H5N1. This may explain the absence of non-H5/H7 HPAIV in poultry.
4

Insertion of Basic Amino Acids in the Hemagglutinin Cleavage Site of H4N2 Avian Influenza Virus (AIV): Reduced Virus Fitness in Chickens is Restored by Reassortment with Highly Pathogenic H5N1 AIV

Gischke, Marcel, Ulrich, Reiner, Fatola, Olanrewaju I., Scheibner, David, Salaheldin, Ahmed H., Crossley, Beate, Böttcher-Friebertshäuser, Eva, Veits, Jutta, Mettenleiter, Thomas C., Abdelwhab, Elsayed M. 02 February 2024 (has links)
Highly pathogenic (HP) avian influenza viruses (AIVs) are naturally restricted to H5 and H7 subtypes with a polybasic cleavage site (CS) in hemagglutinin (HA) and any AIV with an intravenous pathogenicity index (IVPI) 1.2. Although only a few non-H5/H7 viruses fulfill the criteria of HPAIV; it remains unclear why these viruses did not spread in domestic birds. In 2012, a unique H4N2 virus with a polybasic CS 322PEKRRTR/G329 was isolated from quails in California which, however, was avirulent in chickens. This is the only known non-H5/H7 virus with four basic amino acids in the HACS. Here, we investigated the virulence of this virus in chickens after expansion of the polybasic CS by substitution of T327R (322PEKRRRR/G329) or T327K (322PEKRRKR/G329) with or without reassortment with HPAIV H5N1 and H7N7. The impact of single mutations or reassortment on virus fitness in vitro and in vivo was studied. Ecient cell culture replication of T327R/K carrying H4N2 viruses increased by treatment with trypsin, particularly in MDCK cells, and reassortment with HPAIV H5N1. Replication, virus excretion and bird-to-bird transmission of H4N2 was remarkably compromised by the CS mutations, but restored after reassortment with HPAIV H5N1, although not with HPAIV H7N7. Viruses carrying the H4-HA with or without R327 or K327 mutations and the other seven gene segments from HPAIV H5N1 exhibited high virulence and ecient transmission in chickens. Together, increasing the number of basic amino acids in the H4N2 HACS was detrimental for viral fitness particularly in vivo but compensated by reassortment with HPAIV H5N1. This may explain the absence of non-H5/H7 HPAIV in poultry.

Page generated in 0.0902 seconds