• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 6
  • 6
  • 4
  • 2
  • Tagged with
  • 82
  • 82
  • 82
  • 24
  • 24
  • 23
  • 18
  • 18
  • 17
  • 13
  • 12
  • 12
  • 12
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

CFD Modeling of Separation and Transitional Flow in Low Pressure Turbine Blades at Low Reynolds Numbers

Sanders, Darius Demetri 05 November 2009 (has links)
There is increasing interest in design methods and performance prediction for turbine engines operating at low Reynolds numbers. In this regime, boundary layer separation may be more likely to occur in the turbine flow passages. For accurate CFD predictions of the flow, correct modeling of laminar-turbulent boundary layer transition is essential to capture the details of the flow. To investigate possible improvements in model fidelity, both two-dimensional and three-dimensional CFD models were created for the flow over several low pressure turbine blade designs. A new three-equation eddy-viscosity type turbulent transitional flow model originally developed by Walters and Leylek was employed for the current RANS CFD calculations. Flows over three low pressure turbine blade airfoils with different aerodynamic characteristics were simulated over a Reynolds number range of 15,000-100,000, and predictions were compared to experiments. The turbulent transitional flow model sensitivity to inlet turbulent flow parameters showed a dependence on free-stream turbulence intensity and turbulent length scale. Using the total pressure loss coefficient as a measurement of aerodynamic performance, the Walters and Leylek transitional flow model produced adequate prediction of the Reynolds number performance in the Lightly Loaded blade. Furthermore, the correct qualitative flow response to separated shear layers was observed for the Highly Loaded blade. The vortex shedding produced by the separated flow was largely two-dimensional with small spanwise variations in the separation region. The blade loading and separation location was sufficiently predicted for the Aft-Loaded L1A blade flowfield. Investigations of the unsteady flowfield of the Aft-Loaded L1A blade showed the shear layer produced a large separation region on the suction surface. This separation region was located more downstream and significantly reduced in size when impinged upon by the upstream wakes, thus improving the aerodynamic performance consistent with experiments. For all cases investigated, the Walters and Leylek transitional flow model was judged to be sufficient for understanding the separation and transition characteristics, and superior to other widely-used turbulence models in accuracy of describing the details of the transitional and separated flow. This research characterized and assessed a new model for low Reynolds number turbine aerodynamic flow prediction and design improvement. / Ph. D.
32

Aerodynamic Optimization of a 2D Airfoil for Rotary-Wing Aircraft at Mars Atmospheric Conditions

Saez, Aleandro G. 12 1900 (has links)
The interest toward Mars exploration has been considerably increasing due to also the successful deployment of the Perseverance rover and the continuous tests developed by SpaceX's launch vehicle, Starship. While the Mars 2020 mission is currently in progress, the first controlled flight on another planet have been proven in April 2021 with the vertical take-off and landing of the Ingenuity rotorcraft on Mars. In addition, the rotorcraft Dragonfly is expected to achieve the same endeavor in Titan, the largest moon of Saturn, by 2036. Continuous efforts have been oriented toward the development of new technologies and aircraft configurations to improve the performance of current proposed designs to achieve powered flight in different planetary bodies. This thesis work is a preliminary study to develop a comprehensive analysis over the generation of optimum airfoil geometries to achieve vertical flight in environments where low Reynolds numbers and Mach number equal to 0.2 and 0.5.
33

Aerodynamic Analysis of Reflex Airfoils at Low Reynolds Numbers

Meyer Ströborg, Alexander Elliott January 2022 (has links)
Low Reynolds number airfoil analysis has become increasingly significant as urban air mobility vehicles and unmanned aerial vehicles surge in popularity. The Green Raven project at KTH Aero aims to use reflex airfoils where little data is available beyond classical analysis. Viscous formulations of the panel method and computational fluid dynamics (CFD) have been used to simulate lift, drag and moments for the MH61 and MH104 airfoils at different angles of attack (AOAs). XFOIL and CFD turbulence models such as Spalart-Allmaras (SA), k-w Shear Stress Transport (SST) with and without damping coefficients were used. The strengths and limitations of each model were used to justify results. Due to clear computational advantages, XFOIL produced adequate results and is tailored toward use in initial design stages where repeated measurements are crucial. The SA turbulence stood out as the model produced accurate results in a reasonable time. The abundance of published CFD material comparing different turbulence models increased the credibility of the results. The two airfoils had similar lift and drag characteristics at AOAs of 0-6 deg while the MH104 was superior near stall. However, due to the lack of experimental data of the airfoils no particular model could be commended or verified.
34

Experiments in Vortex Formation of Plunging & Flapping Flat Plates

Stanley, Daniel C. January 2008 (has links)
No description available.
35

CFD Analysis of Turbulent Twin Impinging Axisymmetric Jets at Low Reynolds Number

Gopalakrishnan, Raj Narayan January 2017 (has links)
No description available.
36

Transport of particles and organisms in stratified and viscoelastic fluids

Rajat Abhijit Dandekar (13169307) 29 July 2022 (has links)
<p>In this thesis, we unveiled the impact of fluid stratification and viscoelasticity on the transport of microorganisms and microparticles. The thesis is divided into four chapters. Chapters 2 and 3 focus on the transport of the swimming sheet in density and viscosity stratified fluids. Chapter 4 is devoted to analyze the motion of anisotropic particles in density stratified fluids. Chapter 5 focuses on the effect of viscoelasticity on the motion of a suspension of spherical particles.</p>
37

Unsteady Aerodynamic/Hydrodynamic Analysis of Bio-inspired Flapping Elements at Low Reynolds Number

Shehata, Hisham 08 April 2020 (has links)
The impressive kinematic capabilities and structural adaptations presented by bio-locomotion continue to inspire some of the advancements in today's small-scaled flying and swimming vehicles. These vehicles operate in a low Reynolds number flow regime where viscous effects dominate flow interactions, which makes it challenging to generate lift and thrust. Overcoming these challenges means utilizing non-conventional lifting and flow control mechanisms generated by unsteady flapping body motion. Understanding and characterizing the aerodynamic phenomena associated with the unsteady motion is vital to predict the unsteady fluid loads generated, to implement control methodologies, and to assess the dynamic stability and control authority of airborne and underwater vehicles. This dissertation presents experimental results for forced oscillations on multi-element airfoils and hydrofoils for Reynolds numbers between Re=104 and Re=106. The document divides the work into four main sections: The first topic presents wind tunnel measurements of lift forces generated by an oscillating trailing edge flap on a NACA-0012 airfoil to illustrate the effects that frequency and pitching amplitude have on lift enhancement. The results suggest that this dynamic trailing edge flap enhances the mean lift by up to 20% in the stalled flow regime. Using frequency response approach, it is determined that the maximum enhancement in circulatory lift amplitude occurs at stalled angles of attack for lower pitching amplitudes. The second topic presents wind tunnel measurements for lift and drag generated by a sinusoidal and non-sinusoidal oscillations of a NACA-0012 airfoil. The results show that 'trapezoidal' pitching enhances the mean lift and the RMS lift by up to 50% and 35% in the pre-stall flow regime, respectively, whereas the 'reverse sawtooth' and sinusoidal pitching generate the most substantial increase of the lift-to-drag ratio in stall and post-stall flow regimes, respectively. The third topic involves a study on the role of fish-tail flexibility on thrust and propulsive efficiency. Flexible tails enhance thrust production in comparison to a rigid ones of the same size and under the same operating conditions. Further analysis indicates that varying the tail's aspect ratio has a more significant effect on propulsive efficiency and the thrust-to-power ratio at zero freestream flow. On the other hand, changing the material's property has the strongest impact on propulsive efficiency at non-zero freestream flow. The results also show that the maximum thrust peaks correspond to the maximum passive tail amplitudes only for the most flexible case. The final topic aims to assess the unsteady hydrodynamic forces and moments generated by a three-link swimming prototype performing different swimming gaits, swimming speeds, and oscillatory frequencies. We conclude that the active actuation of the tail's first mode bending produces the most significant thrust force in the presence of freestream flow. In contrast, the second mode bending kinematics provides the most significant thrust force in a zero-freestream flow. / Doctor of Philosophy / It is by no surprise that animal locomotion continues to inspire the design of flying and swimming vehicles. Although nature produces complex kinematics and highly unsteady flow characteristics, simplified approximations to model bio-inspired locomotion in fluid flows are experimentally achievable using low degrees of freedom motion, such as pitching airfoils and trailing edge flaps. The contributions of this dissertation are divided into four primary foci: (a) wind tunnel force measurements on a flapped NACA-0012 airfoil undergoing forced pitching, (b) wind tunnel measurements of aerodynamic forces generated by sinusoidal and non-sinusoidal pitching of a NACA-0012 airfoil, (c) towing tank measurements of thrust forces and torques generated by a one-link swimming prototype with varying tail flexibilities, and (d) towing tank measurements of hydrodynamic forces and moments generated by active tail actuation of a multi-link swimming prototype. From our wind tunnel measurements, we determine that lift enhancement by a trailing edge flap is achieved under certain flow regimes and oscillating conditions. Additionally, we assess the aerodynamic forces for a sinusoidal and non-sinusoidal pitching of an airfoil and show that 'trapezoidal' pitching produces the largest lift coefficient amplitude whereas the sinusoidal and 'reverse sawtooth' pitching achieve the best lift to drag ratios. From our towing tank experiments, we note that the role of tail flexibility enhances thrust generation on a swimming device. Finally, we conclude that different kinematics on an articulating body strongly affect the hydrodynamic forces and moments. The results of the towing tank measurements are accessible from an online public database to encourage research and contribution in underwater vehicle design through physics-based low-order models that can accommodate hydrodynamic principles and geometric control concepts.
38

Characterization of Heat Transfer Enhancement for an Oscillating Flat Plate-Fin

Rahman, Aevelina 03 1900 (has links)
Heat transfer augmentation is of paramount importance in energy transfer and storage systems and the idea of using the inherent vibrations in a system to enhance heat transfer needs to be thoroughly researched upon. The current study numerically investigates an infinitesimally thin plate-fin undergoing forced oscillations over a range of amplitudes and frequencies in the presence of an approach flow. Reduced frequencies of 0.25 ≤ k ≤16 and plunge amplitudes of 0.03125 ≤ h ≤ 8 are investigated at Re=100 and Pr = 0.71. It is shown that the combined effect of frequency and amplitude on heat transfer enhancement can be accounted for as a single parameter “plunge velocity” (0.25 ≤ kh ≤ 4) instead of the individual frequency and amplitude values. For kh > 0.5 a significant increase in Nusselt number ( is observed compared to a stationary plate. With increasing kh or more vigorous oscillations, the increase in becomes more prominent and similar trends and comparable magnitudes were observed for a constant value. Unlike the hydrodynamic counterpart of the study, both Leading Edge Vortices (LEVs) and Trailing Edge Vortices (TEVs) are found to act positively to induce enhanced heat transfer on the plate. Finally, the dependence of heat transfer augmentation on the frequency and amplitude of vibration is quantified with a simple parameterization for a plate-fin in a fluid medium. / M.S. / Heat transfer enhancement is of paramount importance in energy transfer and storage systems. The idea of using the inherent mechanical vibrations in a heat producing system to enhance transfer of unwanted heat from that system needs to be thoroughly researched upon. To investigate this idea, we numerically study an infinitesimally thin plate-fin undergoing forced oscillations over a range of amplitudes and frequencies in the presence of an incoming air flow. It is shown that the combined effect of frequency and amplitude on heat transfer enhancement can be accounted for as a single parameter called “plunge velocity” instead of the individual frequency and amplitude values. For a significant plunge velocity, a significant increase in Nusselt number ( is observed compared to a stationary plate representing an increase in the extent of heat transferred. With more vigorous oscillations, the increase in becomes more prominent and similar trends and comparable magnitudes were observed for a constant value. Finally, the dependence of heat transfer augmentation on the frequency and amplitude of vibration is quantified with a simple parameterization for a plate-fin in a fluid medium.
39

On The Characterization and Modeling Of Unsteady Aerodynamic Systems In Extraterrestrial Environments

Farrell, Wayne Williamtine 01 January 2024 (has links) (PDF)
The history and trajectory of the human race is inseparable from our innate need to explore the unknown. As human exploration drives boundless new insights into the universe, characterization and accurate modeling methods are required to develop the next generation of exploratory vehicles to map and analyze foreign lands. As such the presented work looks to provide characterization and modeling approaches for unsteady aerodynamic phenomena in the extraterrestrial environments of Mars and Titan. Specifically, unsteady aerodynamic loads including dynamic stall are characterized using high-fidelity numerical experiments to better understand the effects of low Reynolds number and high Mach number flows on the process. Additionally, modeling of unsteady aerodynamic behavior at low Reynolds numbers similar to those observed when designing the Mars ingenuity rotorcraft are developed and extensively evaluated. Lastly, the characterization and multi-fidelity modeling of unsteady aerodynamic effects under Titan atmospheric conditions is conducted for a coaxial rotor system.
40

Aspects of low Reynolds number microswimming using singularity methods

Curtis, Mark Peter January 2013 (has links)
Three different models, relating to the study of microswimmers immersed in a low Reynolds number fluid, are presented. The underlying, mathematical concepts employed in each are developed using singularity methods of Stokes flow. The first topic concerns the motility of an artificial, three-sphere microswimmer with prescribed, non-reciprocal, internal forces. The swimmer progresses through a low Reynolds number, nonlinear, viscoelastic medium. The model developed illustrates that the presence of the viscoelastic rheology, when compared to a Newtonian environment, increases both the net displacement and swimming efficiency of the microswimmer. The second area concerns biological microswimming, modelling a sperm cell with a hyperactive waveform (vigorous, asymmetric beating), bound to the epithelial walls of the female, reproductive tract. Using resistive-force theory, the model concludes that, for certain regions in parameter space, hyperactivated sperm cells can induce mechanical forces that pull the cell away from the wall binding. This appears to occur via the regulation of the beat amplitude, wavenumber and beat asymmetry. The next topic presents a novel generalisation of slender-body theory that is capable of calculating the approximate flow field around a long, thin, slender body with circular cross sections that vary arbitrarily in radius along a curvilinear centre-line. New, permissible, slender-body shapes include a tapered flagellum and those with ribbed, wave-like structures. Finally, the detailed analytics of the generalised, slender-body theory are exploited to develop a numerical implementation capable of simulating a wider range of slender-body geometries compared to previous studies in the field.

Page generated in 0.0614 seconds