• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 35
  • 35
  • 35
  • 13
  • 12
  • 8
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Design considerations for LEO nanosatellite propulsion technologies

Macario Rojas, Alejandro January 2018 (has links)
In recent years the space industry has seen significant growth in numbers of sub 10kg satellite platforms now known more broadly in the industry as nanosatellites. Nanosatellites potential applicability is driven by flourishing technologies miniaturisation in the consumer electronics market and commercialisation of space. Currently nanosatellite mission operations are limited in both lifetime and manoeuvrability due to limitations in on board propulsion technologies. Further enhancement of mission operations relies on more effective integration of current reaction-mass-based propulsion technologies and further development of miniaturised propulsion systems. Paradoxically, the compact spacecraft size and mass that facilitate nanosatellite access to space is presently a drawback in terms of acceptable systems performance and propulsion systems capacity. Moreover characteristic power density and vulnerability to the space environment is already high in nanosatellites in contrast to major satellites, rendering the design, inclusion, and optimisation of propulsion technologies a challenging task. This thesis focuses on techniques to support mission planning and characterisation of propulsion technologies for nanosatellites. Acknowledging the outweighing significance of solar activity modulating space environment perturbations and particularly atmospheric drag, a robust solar forecast method is proposed to support lifetime estimations. Complementing the pivotal framework information for propulsion system design and management, the vulnerability to atmospheric drag is assessed to identify the profile of the current vaguely defined drag coefficient of standard nanosatellites. Finally, addressing a crucial task on emerging propulsion technologies for nanosatellite systems, a method to improve low thrust characterisation via in-orbit manoeuvres using standard elementary attitude determination resources is devised. The robust solar activity forecast is carried out using observed historic and reconstructed Sun’s polar magnetic field, to define the initial state of an up-to-date solar magnetohydrodynamics computational model; the method successfully reproduces recent solar cycles activity, anticipating moderate-to-low activity during the next 25th cycle. The identification of the drag coefficient profile in standard nanosatellites is enabled by the statistical assessment of observed orbital decay through an iterative fitting process of propagated orbits; the profile is physically consistent and descriptive mostly in orbits below 350km during moderate-to-high solar activity. Finally, the devised thrust characterisation method exploits the regular geometry and mass distribution of standard nanosatellites to identify low thrust actuation via actuated body angular rotation rates in an intermediate axis spinner; precise computer simulations show that it is possible to improve low thrust estimations from weak and noisy sensor signals using the proposed method against typical methods using body angular acceleration.
12

Persistent military satellite communications coverage using a cubesat constellation in low earth orbit

Nelson, Jacqueline M. 01 January 2010 (has links)
This thesis describes the approach to designing a Low Earth Orbit CubeSat constellation capable of nearly constant coverage. The software package Satellite Tool Kit is used to create simulated multi-satellite systems that maintain a communication link between Tenby, Pembrokeshire, Wales and tactically chosen locations in the United States of America. The research will attempt to find the constellation capable of maintaining a set of design parameters (such as signal to noise ratio and altitude), with the minimum possible number of CubeSats. The downlink location, antenna design and the orbital planes are the negotiable parameters in the system, with little to no set constraints, and thus will be altered until the most favorable system is successfully designed.
13

Distributed Guidance, Navigation and Control for Satellite Formation Flying Missions / Verteilte Leit- und Regelungsverfahren für Satellitenformationen

Scharnagl, Julian January 2022 (has links) (PDF)
Ongoing changes in spaceflight – continuing miniaturization, declining costs of rocket launches and satellite components, and improved satellite computing and control capabilities – are advancing Satellite Formation Flying (SFF) as a research and application area. SFF enables new applications that cannot be realized (or cannot be realized at a reasonable cost) with conventional single-satellite missions. In particular, distributed Earth observation applications such as photogrammetry and tomography or distributed space telescopes require precisely placed and controlled satellites in orbit. Several enabling technologies are required for SFF, such as inter-satellite communication, precise attitude control, and in-orbit maneuverability. However, one of the most important requirements is a reliable distributed Guidance, Navigation and Control (GNC) strategy. This work addresses the issue of distributed GNC for SFF in 3D with a focus on Continuous Low-Thrust (CLT) propulsion satellites (e.g., with electric thrusters) and concentrates on circular low Earth orbits. However, the focus of this work is not only on control theory, but control is considered as part of the system engineering process of typical small satellite missions. Thus, common sensor and actuator systems are analyzed to derive their characteristics and their impacts on formation control. This serves as the basis for the design, implementation, and evaluation of the following control approaches: First, a Model Predictive Control (MPC) method with specific adaptations to SFF and its requirements and constraints; second, a distributed robust controller that combines consensus methods for distributed system control and $H_{\infty}$ robust control; and finally, a controller that uses plant inversion for control and combines it with a reference governor to steer the controller to the target on an optimal trajectory considering several constraints. The developed controllers are validated and compared based on extensive software simulations. Realistic 3D formation flight scenarios were taken from the Networked Pico-Satellite Distributed System Control (NetSat) cubesat formation flight mission. The three compared methods show different advantages and disadvantages in the different application scenarios. The distributed robust consensus-based controller for example lacks the ability to limit the maximum thrust, so it is not suitable for satellites with CLT. But both the MPC-based approach and the plant inversionbased controller are suitable for CLT SFF applications, while showing again distinct advantages and disadvantages in different scenarios. The scientific contribution of this work may be summarized as the creation of novel and specific control approaches for the class of CLT SFF applications, which is still lacking methods withstanding the application in real space missions, as well as the scientific evaluation and comparison of the developed methods. / Die anhaltenden Veränderungen in der Raumfahrt – die fortschreitende Miniaturisierung, die sinkenden Kosten für Raketenstarts und Satellitenkomponenten sowie die verbesserten Rechen- und Steuerungsmöglichkeiten von Satelliten – fördern den Satelliten-Formationsflug (SFF) als Forschungs- und Anwendungsgebiet. SFF ermöglicht neue Anwendungen, die mit herkömmlichen Einzelsatellitenmissionen nicht (oder nicht mit vertretbarem Aufwand) realisiert werden können. Insbesondere verteilte Erdbeobachtungsanwendungen wie Photogrammetrie und Tomographie oder verteilte Weltraumteleskope erfordern präzise positionierte und kontrollierte Satelliten in der Umlaufbahn. Für den SFF sind verschiedene Basistechnologien erforderlich, z. B. Kommunikation zwischen den Satelliten, präzise Lageregelung und Manövrierfähigkeit. Eine der wichtigsten Anforderungen sind jedoch zuverlässige verteilte Leit- und Regelungsverfahren (Guidance, Navigation and Control, GNC). Diese Arbeit befasst sich mit dem Thema der verteilten GNC für SFF in 3D mit dem Schwerpunkt auf Satelliten mit kontinuierlichem, niedrigen Schub (Continuous Low-Thrust, CLT) z.B. mit elektrischen Triebwerken und legt den Fokus hier zusätzlich auf niedrige kreisförmige Erdumlaufbahnen. Der Schwerpunkt dieser Arbeit liegt jedoch nicht nur auf der Regelungstheorie, vielmehr wird Regelung als Teil des Systementwicklungsprozesses typischer Kleinsatellitenmissionen betrachtet. So werden gängige Sensor- und Aktuatorsysteme analysiert, um ihre Eigenschaften und ihre Auswirkungen auf die Formationskontrolle abzuleiten. Dies dient als Grundlage für den Entwurf, die Implementierung und die Bewertung der folgenden Regelungsansätze: Erstens eine Modellprädiktive Regelung (Model-Predictive Control, MPC) mit spezifischen Anpassungen an die Anforderungen und Beschränkungen des SFFs, zweitens ein robuster Regler, der Konsensmethoden für die Steuerung verteilter Systeme mit robuster $H_{\infty}$-Regelung kombiniert, und schließlich ein kaskadierter Regler, der zur Steuerung die Regelstrecke invertiert und dessen Referenz von einem Referenzregler auf einer optimalen Trajektorie unter Berücksichtigung verschiedener Beschränkungen zum Ziel gesteuert wird. Die entwickelten Regler werden auf der Grundlage umfangreicher Softwaresimulationen validiert und miteinander verglichen. Realistische 3D-Formationsflug-Szenarien wurden der NetSat-Formationsflug-Mission entnommen. Die drei verglichenen Methoden zeigen unterschiedliche Vor- und Nachteile in den verschiedenen Anwendungsszenarien. Der verteilten robusten konsensbasierten Regelung fehlt bspw. die Fähigkeit, den maximalen Schub zu begrenzen, sodass sie nicht für Satelliten mit CLT geeignet ist. Aber sowohl der MPC-basierte Ansatz als auch der auf der Invertierung der Regelstrecke basierende Ansatz sind für CLT SFF-Anwendungen geeignet und weisen wiederum ander Vor- und Nachteile in unterschiedlichen Szenarien auf. Der wissenschaftliche Beitrag dieser Arbeit besteht in der Entwicklung neuartiger und spezifischer Regelungsansätze für die Klasse der CLT-SFF-Anwendungen, für die es noch keine Methoden gibt, die der Anwendung in realen Weltraummissionen standhalten, sowie in der wissenschaftlichen Bewertung und dem Vergleich der entwickelten Methoden.
14

Efficient Communication in Networks of Small Low Earth Orbit Satellites and Ground Stations / Effiziente Kommunikation in Netzwerken bestehend aus Kleinstsatelliten in erdnahen Umlaufbahnen und Bodenstationen

Freimann, Andreas January 2022 (has links) (PDF)
With the miniaturization of satellites a fundamental change took place in the space industry. Instead of single big monolithic satellites nowadays more and more systems are envisaged consisting of a number of small satellites to form cooperating systems in space. The lower costs for development and launch as well as the spatial distribution of these systems enable the implementation of new scientific missions and commercial services. With this paradigm shift new challenges constantly emerge for satellite developers, particularly in the area of wireless communication systems and network protocols. Satellites in low Earth orbits and ground stations form dynamic space-terrestrial networks. The characteristics of these networks differ fundamentally from those of other networks. The resulting challenges with regard to communication system design, system analysis, packet forwarding, routing and medium access control as well as challenges concerning the reliability and efficiency of wireless communication links are addressed in this thesis. The physical modeling of space-terrestrial networks is addressed by analyzing existing satellite systems and communication devices, by evaluating measurements and by implementing a simulator for space-terrestrial networks. The resulting system and channel models were used as a basis for the prediction of the dynamic network topologies, link properties and channel interference. These predictions allowed for the implementation of efficient routing and medium access control schemes for space-terrestrial networks. Further, the implementation and utilization of software-defined ground stations is addressed, and a data upload scheme for the operation of small satellite formations is presented. / Mit der Miniaturisierung von Satelliten hat eine fundamentale Änderung in der Raumfahrtindustrie stattgefunden. Anstelle von einzelnen, großen, monolithischen Satelliten werden heutzutage immer mehr Systeme entworfen die aus mehreren Kleinstsatelliten bestehen die kooperativ zusammenarbeiten. Die geringeren Kosten für Entwicklung und Start sowie die räumliche Verteilung dieser Satellitensysteme ermöglichen die Realisierung neuer wissenschaftlicher Missionen und kommerzieller Dienstleistungen. Durch diesen Paradigmenwechsel entstehen neue Herausforderungen für Ingenieure, insbesondere in den Bereichen Funkkommunikation und Netzwerkprotokolle. Satelliten in erdnahen Umlaufbahnen und Bodenstationen bilden sogenannte Satelliten-terrestrische Netzwerke. Die Eigenschaften dieser Netzwerke unterscheiden sich wesentlich von denen anderer Netzwerke. Die resultierenden Herausforderungen in den Bereichen Systemdesign, Systemanalyse, Paketvermittlung, Routing und Medienzugriffskontrolle, sowie Herausforderungen in Bezug auf die Zuverlässigkeit und Effizienz der Funkkommunikation werden in dieser Dissertation behandelt. Die physikalische Modellierung von Satelliten-terrestrischen Netzwerken wird behandelt durch die Analyse von existierenden Satelliten- und Funkkommunikationssystemen, durch die Nutzung von Messungen an einer Bodenstation und einem Satelliten und durch die Implementierung eines Simulators für Satelliten-terrestrische Netzwerke. Die resultierenden System- und Kanalmodelle wurden als Basis für die Prädiktion der dynamischen Netzwerktopologien, Verbindungseigenschaften und Kanalinterferenzen genutzt. Diese Prädiktionen haben die Implementierung effizienter Verfahren für Routing und Medienzugriffskontrolle in Satelliten-terrestrischen Netzwerken ermöglicht. Darüber hinaus wird die Implementierung und Nutzung von Bodenstationen auf Basis von digitaler Signalverarbeitung behandelt und ein Datenübertragungsverfahren für den Betrieb von Kleinstsatellitenformationen beschrieben und evaluiert.
15

Atomic Oxygen Considerations for LEO De-orbit Trajectories Using Solar Sails

Fugett, Daniel A. 01 June 2017 (has links) (PDF)
Solar sails have the potential to benefit many future space exploration missions, but they lack the heritage required for present-day use. To grow confidence in solar sail technology, they could be deployed on LEO satellites higher than 600 km to help de-orbit the satellite within 25 years upon mission termination. To determine how atomic oxygen would affect the solar sail, material from Lightsail-2 was tested in a thermal-energy, isotropic, atomic oxygen vacuum chamber based in the space environments laboratory in California Polytechnic State University. The sail material, aluminized Mylar, was tested for its survivability on both the coated and uncoated side, as well as tested for the optical degradation of the coated side. The uncoated side was found to be completely eroded after a fluence of 2.27 x1020 atoms/cm2, or ~40 days in International Space Station orbit. The coated side experienced no mass loss, but signs of significant undercutting were found with a fluence of 1.19 x1021 atoms/cm2, or ~200 days at station orbit. The stitches present on the coated side, meant to prevent tear propagation, eroded before the sample experienced a fluence of 4.13 x1020 atoms/cm2, or ~70 days at station orbit. The average total reflectivity of the material dropped by ~5% after atomic oxygen exposure, however no correlation with fluence was found. Average specular reflectivity remained unchanged after atomic oxygen exposure. The reflectivity results were impacted by wrinkling in the material, which was found to have a much larger impact than atomic oxygen exposure. These results were paired with an optimal de-orbit trajectory algorithm, developed in this thesis, to determine how atomic oxygen would affect a solar sail deployed to de-orbit an 800 km LEO satellite with a ballistic coefficient of 0.1. Using a simplified 2D orbit case, it was found that the satellite would de-orbit within 12-18 years, depending primarily on the solar activity level. The measured worst-case for optical degradation increased de-orbit time by ~6 months. Additionally, assuming that the sail material was perfectly reflecting decreased de-orbit time by 2-4 years. The amount of fluence required to erode the uncoated Mylar, and the amount required to erode the stitches, were both reached long before the satellite re-entered. It is therefore recommended that the solar sail minimize uncoated side exposure to atomic oxygen, and a more atomic oxygen-resistant stitch material be found. The fluence required to produce significant material undercutting was reached only once the satellite’s orbit had degraded to below 400 km. But the undercutting was observed to structurally compromise the material; thus, future LEO solar sail mission designers must take care when balancing added performance with higher failure risk when considering the tension in the deployed sail.
16

Performance analysis of the transmission control protocol over low earth orbit satellite communication systems

Sangal, Rahul January 1999 (has links)
No description available.
17

A carrier phase only processing technique for differential satellite-based positioning systems

Lee, Shane-Woei January 1999 (has links)
No description available.
18

An infrared earth horizon sensor for a LEO satellite

Van Rensburg, Helgard Marais 03 1900 (has links)
Thesis (MScEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2008. / Horizon sensing is an effective way to determine the pitch and roll of a LEO satellite and Earth horizon sensors that operate in the visible range of the electromagnetic spectrum are commonly used. These sensors have the disadvantage that they cannot operate when the satellite is in eclipse. Earth horizon sensors that operate in the infrared spectral range are a solution to take attitude measurements when the satellite is in eclipse. Until recently infrared detectors could only operate at very low temperatures and needed to be cryogenically cooled. The result was that their power consumption and physical characteristics (like dimensions and mass) were such that they were not suitable for use in small and medium LEO satellites. As a result of technology expansion in the field of infrared imagers the past few years, infrared imagers were developed which do not require cooling. The scope of this project was to develop and implement an Earth horizon sensor by using a low-cost, uncooled infrared imager. The performance and physical characteristics of various imager were evaluated and it was decided to select a low resolution thermopile imager mainly as a result of the cost limitations of the project. Software algorithms were then evaluated and selected for horizon detection and attitude determination. The Earth horizon sensor that was developed did not comply with the accuracy requirement (3s < 0.1o) that was set for the project because of the low resolution of the sensor. Methods to improve the accuracy were investigated and finally a sub-pixel edge estimation algorithm was developed and implemented which resulted in an improvement of 69% in the pitch accuracy and 49% in roll accuracy. With the sub-pixel edge estimation algorithm implemented the horizon sensor almost met the accuracy requirements (s < 0.0811o for pitch and s < 0.2944o for roll). This project confirms that, with further improvement to the design and test facilities, developing a low-cost, uncooled infrared Earth horizon sensor that meets the accuracy requirements is feasible.
19

Leo Satellites: Attitude Determination And Control Components / Some Linear Attitude Control Techniques

Kaplan, Ceren 01 May 2006 (has links) (PDF)
In this thesis, application of linear control methods to control the attitude of a Low-Earth Orbit satellite is studied. Attitude control subsystem is first introduced by explaining attitude determination and control components in detail. Satellite dynamic equations are derived and linearized for controller design. Linear controller and linear quadratic regulator are chosen as controllers for attitude control. The actuators used for control are reaction wheels and magnetic torquers. MATLAB-SIMULINK program is used in order to simulate satellite dynamical model (actual nonlinear model) and controller model. In simulations, the satellite parameters are selected to be similar to the actual BILSAT-1 satellite parameters. In conclusion, simulations obtained from different linear control methods are compared within themselves and with nonlinear control methods, at the same time with that obtained from BILSAT-1 satellite log data.
20

Satellite communications strategy selection for optimal LEO satellite communication

Bezuidenhout, Quintus 12 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: A low earth orbit satellite system can be useful in numerous communication applications where physical connections are not possible. Communication time available from any point on earth to the satellite is less than one hour per day. This one hour is fragmented into smaller time slots due to the satellite orbiting. This is not much time to transfer data and there is even less time available to transfer data when there are other external factors affecting the system. It is thus crucial to optimise the satellite communications link so that more data can be transferred per orbit. The goal of this thesis is to improve the performance of a low earth orbit satellite communication channel by varying certain parameters of the system, such as the protocol used, modulation scheme, packet size, transmission power etc. and then to observe how these parameters influence the system. The protocols that were chosen to be implemented are CSMA-CA, CSMA-CA with DSSS technology and Round-Robin Polling. A simulator for each protocol was designed with the Opnet platform, so that specific parameters could be changed and the results observed, in order to optimise the communications link between the satellite and ground stations. The results showed that there is no particular configuration of modulation scheme, packet size, transmission power etc. presenting the best overall solution for LEO satellite communications. It must be considered what the specific LEO satellite application would be used for and the characteristics required by that specific application. A suitable configuration must subsequently be chosen from the set of configurations available to satisfy most of the application requirements. / AFRIKAANSE OPSOMMING: ’n Satelliet met ’n lae wentelbaan kan gebruik word in verskeie kommunikasie toepassings waar fisiese verbindinge nie noodwendig moontlik is nie. Die kommunikasietyd van enige punt van aarde af na die satelliet, is minder as een uur per dag. Hierdie tyd word nog verder verklein omdat die satelliet besig is om, om die aarde te wentel. ’n Uur is glad nie baie tyd om data oor te dra nie en in realiteit is daar nog minder tyd beskikbaar as daar eksterne faktore op die sisteem inwerk. Dus is dit baie belangrik om die satelliet kommunikasiekanaal te optimiseer sodat soveel moontlik data as moontlik oorgedra kan word per omwenteling. Die doel van hierdie tesis is om die deurset van die kommunikasiekanaal van n lae wentelbaan satelliet te optimiseer, deur verskeie parameters te verander soos, protokol wat gebruik word, modulasie skema, pakkie grootte, transmissiekrag ens. en dan waar te neem hoe dit die sisteem beïnvloed. Die protokolle wat geïmplementeer is, is CSMA-CA, CSMA-CA met DSSS tegnologie en Round-Robin Polling. ’n Simulator vir elke protokol was ontwerp in die Opnet simulasie platform, sodat die spesifieke parameters verander kon word om die resultate te bestudeer met die doel om die kommunikasiekanaal tussen die satelliet en grond stasies optimaal te benut. Die resultate het bewys dat daar geen spesifieke konfigurasie van modulasie skema, pakkie grootte, transmissiekrag ens. is wat die algehele beste oplossing is nie. Die spesifieke applikasie waarvoor die lae wentelbaan satelliet gaan gebruik word moet geanaliseer word sowel as die spesifieke karakteristieke van daai applikasie. Daarvolgens moet n unieke konfigurasie opgestel word wat meeste van die applikasie se behoeftes bevredig.

Page generated in 0.0234 seconds