• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 18
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 65
  • 65
  • 44
  • 22
  • 20
  • 19
  • 15
  • 15
  • 14
  • 14
  • 11
  • 11
  • 11
  • 10
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

A sensor orientation and signal preprocessing study of a personal fall detection algorithm

Johansson, Viktor January 2020 (has links)
This study investigates if a smartphones orientation in the pocket affects the result of a decision tree model trained with data from personal falls, and also how a low-pass filter affects these results. A comparison is made between the results gathered from this study, compared to previous studies and products within the field. The data was gathered using a smartphone application and was later split up to get datasets for all the different orientations of the smartphone. Before training the models, the data was processed through a low pass filter. Results showed that low pass filtered signals generally performed better and that two of the trained models, could outscore at least one other algorithm cited in this thesis in at least one category. However, existing products on the market that were investigated do not disclose their statistics and a comparison to these products could not be made. The best two orientations for the phone to be placed in the pocket was when the face of the phone was pointing out from the leg, and top of the phone was pointing up and also when the face of the phone was pointing out from the leg, and the top of the phone was pointing down.
22

Developing a digits in noise screening test with higher sensitivity to high-frequency hearing loss

Motlagh Zadeh, Lina 02 August 2019 (has links)
No description available.
23

The Electromagnetic Simulation of Birdcage Coils for MRI based on Finite Element Method

Tadesse, Yonatan Abebe January 2016 (has links)
No description available.
24

Stability assessment of nonlinear systems using the lyapunov exponent

Best, Eric A. January 2003 (has links)
No description available.
25

RF Sampling by Low Pass ΣΔ Converter for Flexible Receiver Front End

Qazi, Fahad January 2009 (has links)
<p>In today’s world the multi-standard wireless receivers are gaining more and more popularity. End-users want to access voice, data and streaming media from a single wireless terminal. An ideal approach for multi-standard receiver front-end is to digitize a wide band RF signal available from the antenna. All radio functions such as downconversion, demodulation and channel selection can be then performed in the digital domain. Analog to Digital Converter in such a case should guarantee very high linearity, speed and bandwidth specifications while consuming a lot of power. Unfortunately an ADC with such stringent requirements cannot be realized in today’s CMOS technology. In a typical receiver a mixer is used to downconvert the RF signal to baseband (or IF) before digitization is performed. A passive mixer is often used in this case to mitigate the effect of the low frequency flicker noise. Specially it can be a sampling mixer which also serves as a S/H circuit usually required for A/D conversion. In this thesis a lowpass sigma-delta converter with RF sampling is presented. The ΣΔ modulator is SC passive circuit plus comparator, so an operational amplifier usually needed to realize the integrator is avoided. To reduce the complexity, the sampling mixer in front of the modulator is merged with the passive loop filter. As a result the sampling mixer is closed in the modulator loop, so the overall linearity of the frontend is improved to some extent. Downconversion is combined with digitization that reduces the circuit complexity as well.The challenges while digitizing high frequency RF signal are discussed in details. Switches required to realize the loop filter are very critical and tend to be nonlinear. Parasitic effects associated with MOS transistors strongly show up at GHz frequencies. Optimized transistor sizes are obtained through simulation while addressing the speed and linearity trade-off. Another major challenge is the kT/C noise that is the real bottleneck in high frequency SC circuit design. A thermal noise model for ΣΔ-modulator with second-order loop filter is presented and it is shown that a passive ΣΔ-modulator is  in fact thermal noise limited rather than quantization noise limited. It is because the capacitor values are limited by the very high sampling frequency used in this case.The downconverting lowpass ΣΔ modulator with second order SC passive loop filter and 1-bit quantizer is simulated at transistor level in 90nm CMOS process. This modulator can operate at very high sampling frequency upto 4GHz and can sample RF signal with carrier of upto 4GHz as well. The designed ΣΔ modulator is flexible and supports sub-sampling by 2 to 8 (fs = 500MHz, ... 2GHz). Besides, the presented design is very power efficient as it does not use OpAmps – which consume most of the power in the typical ΣΔ modulators. From schematic simulation on average, signal-to-noise and distortion ratio (SNDR) of 52 dB is obtained (ENOB = 8.3). SNDR results does not vary much for three different cases of baseband digitalization, RF sampling and RF sub-sampling. This SNDR value seems to be a good number for a passive sigma-delta modulator. The detailed simulation results for the three cases discussed in the thesis work shown that, the modulator performs equally well for a wide range of sampling and RF signal frequencies.</p>
26

RF Sampling by Low Pass ΣΔ Converter for Flexible Receiver Front End

Qazi, Fahad January 2009 (has links)
In today’s world the multi-standard wireless receivers are gaining more and more popularity. End-users want to access voice, data and streaming media from a single wireless terminal. An ideal approach for multi-standard receiver front-end is to digitize a wide band RF signal available from the antenna. All radio functions such as downconversion, demodulation and channel selection can be then performed in the digital domain. Analog to Digital Converter in such a case should guarantee very high linearity, speed and bandwidth specifications while consuming a lot of power. Unfortunately an ADC with such stringent requirements cannot be realized in today’s CMOS technology. In a typical receiver a mixer is used to downconvert the RF signal to baseband (or IF) before digitization is performed. A passive mixer is often used in this case to mitigate the effect of the low frequency flicker noise. Specially it can be a sampling mixer which also serves as a S/H circuit usually required for A/D conversion. In this thesis a lowpass sigma-delta converter with RF sampling is presented. The ΣΔ modulator is SC passive circuit plus comparator, so an operational amplifier usually needed to realize the integrator is avoided. To reduce the complexity, the sampling mixer in front of the modulator is merged with the passive loop filter. As a result the sampling mixer is closed in the modulator loop, so the overall linearity of the frontend is improved to some extent. Downconversion is combined with digitization that reduces the circuit complexity as well.The challenges while digitizing high frequency RF signal are discussed in details. Switches required to realize the loop filter are very critical and tend to be nonlinear. Parasitic effects associated with MOS transistors strongly show up at GHz frequencies. Optimized transistor sizes are obtained through simulation while addressing the speed and linearity trade-off. Another major challenge is the kT/C noise that is the real bottleneck in high frequency SC circuit design. A thermal noise model for ΣΔ-modulator with second-order loop filter is presented and it is shown that a passive ΣΔ-modulator is  in fact thermal noise limited rather than quantization noise limited. It is because the capacitor values are limited by the very high sampling frequency used in this case.The downconverting lowpass ΣΔ modulator with second order SC passive loop filter and 1-bit quantizer is simulated at transistor level in 90nm CMOS process. This modulator can operate at very high sampling frequency upto 4GHz and can sample RF signal with carrier of upto 4GHz as well. The designed ΣΔ modulator is flexible and supports sub-sampling by 2 to 8 (fs = 500MHz, ... 2GHz). Besides, the presented design is very power efficient as it does not use OpAmps – which consume most of the power in the typical ΣΔ modulators. From schematic simulation on average, signal-to-noise and distortion ratio (SNDR) of 52 dB is obtained (ENOB = 8.3). SNDR results does not vary much for three different cases of baseband digitalization, RF sampling and RF sub-sampling. This SNDR value seems to be a good number for a passive sigma-delta modulator. The detailed simulation results for the three cases discussed in the thesis work shown that, the modulator performs equally well for a wide range of sampling and RF signal frequencies.
27

Eύρεση καρδιακού ρυθμού ασθενούς με τεχνικές ψηφιακής επεξεργασίας εικόνας στο υπέρυθρο φάσμα

Μοσχόβας, Γεώργιος 27 December 2010 (has links)
Στην παρούσα διπλωματική εργασία ασχοληθήκαμε με την εύρεση του καρδιακού παλμού ενός ατόμου με τεχνικές ψηφιακής επεξεργασίας εικόνας στο κοντινό και στο μέσο υπέρυθρο φάσμα. Χρησιμοποιήσαμε μια σειρά από διόδους εκπομπής στο υπέρυθρο φάσμα και μια βιντεοκάμερα με την οποία πήραμε τα προς εξέταση δεδομένα. Στηριζόμαστε στην ιδιότητας της αιμοσφαιρίνης να απορροφά το υπέρυθρο φως ορισμένου μήκους κύματος. Επεξεργαζόμενοι το οπτικό υλικό που προκύπτει από τις μετρήσεις μας με κατάλληλες μεθόδους μπορούμε να πλησιάσουμε στην εύρεση του καρδιακού ρυθμού, μελετώντας τα βιολογικά σήματα και ευρίσκοντας μεθόδους βελτίωσης τους. Θα κάνουμε μία σύντομη αναφορά στα κεφάλαια που περιλαμβάνει η εργασία αυτή. Στην αρχή γίνεται μια γνωριμία με τον τομέα της Βιοιατρικής Τεχνολογίας, τις εφαρμογές αυτού και τους κλάδους που τον συνθέτουν. Εν συνεχεία, δίνονται κάποιες εισαγωγικές έννοιες σε σχέση με τα βιολογικά σήματα καθώς και οι βασικές αρχές επεξεργασίας αυτών. Κατόπιν προσεγγίζονται βασικές έννοιες φυσιολογίας του καρδιοκυκλοφοριακού συστήματος και της αιμοσφαιρίνης, καθώς διαδραματίζει σημαντικότατο ρόλο στην πειραματική μας διαδικασία. Ακολουθεί η περιγραφή της πειραματικής διάταξης καθώς και τα αποτελέσματα που προέκυψαν από τις πειραματικές διαδικασίες που πραγματοποιήθηκαν στο εργαστήριο μας. Στα επόμενα τρία κεφάλαια πραγματοποιείται η επεξεργασία των σημάτων μας αρχικά με τη βοήθεια του μετασχηματισμού Fourier και έπειτα με τη χρήση μιας σειράς κατωδιαβατών φίλτρων εφαρμοσμένων στα σήματα φωτεινότητας αλλά και στις εικόνες που προέκυψαν από το πειραματικό μέρος της εργασίας. Παραθέτουμε τα αποτελέσματα και τα συμπεράσματα μας από τη μελέτη αυτών. Τέλος,γίνεται αναφορά στις βασικές αρχές που διέπουν την απορρόφηση του φωτός κια στις βασικές διεργασίες που συνtελούν στη λειτουργία αυτή. / In this paper we dealt with finding the heartbeat of a person with digital image processing techniques in the near and mid infrared range. We used a series of infrared emitting diodes spectrum and a CCD video camera with which we got to test data. We rely on the status of hemoglobin to absorb the infrared light of certain wavelength. By editing visual materials resulting from our measurements using appropriate methods we can get closer to finding the rhythm, studying the biological signals. In the beginning there is an introduction to the field of medical technology, applications and industries such as it is composed. Then, we present some introductory concepts in relation to biological signals and the basic principles of processing. Afterwards, we approached concepts of circulation physiology and the properties of hemoglobin, as it plays a crucial role in our experimental procedure. We also describe the experimental setup and the results of the experimental procedures performed in our laboratory. The next three chapters are about the processing of signals using the Fourier transformation and then we use a series of low-pass filters applied to luminance signals and images obtained from the experimental part. Then we refer to the results and conclusions from our study which shows similarities between the heart rate curve and the luminance curve. Finally, reference is made to the basic principles governing the absorption of light,as it is the basic feature used to interpret our results.
28

A Study of Digital RF Phase Shifters Fabricated With Additive Manufacturing

Vega, Yaniel 30 October 2015 (has links)
Digital RF phase shifters fabricated using additive manufacturing processes are presented and studied. The purpose is to explain the performance differences between phase shifters fabricated using additive manufacturing and those fabricated with conventional subtractive techniques. All phase shifters are designed to operate at a center frequency of 2.45 GHz with a 100 MHz bandwidth. The 1-bit 45° switched line phase shifters have an average insertion loss of 1.3 dB and a 220 mm2 footprint, while the 1-bit 180° high-pass low-pass phase shifters have an insertion loss 1.56 dB and a 180 mm2 footprint. The 4-bit high-pass low-pass, switched line hybrid phase shifters on the other hand show an average state insertion loss of 5.4 dB and have a 660 mm2 foot print. By carefully analyzing the performance of the various phase shifter designs it is shown that the limiting factors of additive manufacturing technology are the low conductivity of CB028 silver ink in comparison to copper, and the inability to print dielectrics with low surface roughness. Finally, parallel plate capacitors and a spiral inductor designed to be fabricated using additive manufacturing techniques are studied. This is done in order to better understand the advantages and disadvantages of such a design. By analyzing the component’s simulated performance it is shown that 3D printed capacitors and inductors are feasible as long as the capacitance or inductance values needed are low. Large value 3D printed components are impractical for RF applications due to their large size.
29

An Analogue Baseband Chain for a MagneticTunnel Junction Based RF Signal Detector

Ma, Rui, Buhr, Simon, Tibenszky, Zoltán, Kreißig, Martin, Ellinger, Frank 22 November 2021 (has links)
This work presents an analogue baseband (BB) chain for a magnetic tunneling junction (MTJ) based radiofrequency (RF) signal detector fully integrated in a hybrid CMOS-MTJ technology. The BB chain contains a 6 th -order gm-C low-pass filter (LPF), a BB amplifier, a comparator, and a current bank. According to measurement results, the 6 th -order LPF with a cut-off frequency of 10 MHz consumes a very low DC power of 2.41 mW. Its DC power consumption per pole of 0.4 mW is the lowest among the state-of-the-art LPFs. The LPF can be also switched on and off very fast within 110 ns. With the fast switch-ability and the low power consumption, the LPF outperforms the state of the art. Furthermore, the complete BB chain can transform a 2.5 Vpp, 5 Mbps BB signal into digital data with a bit error rate fewer than 1e−6 . The BB chain consumes 2.85mW including all bias circuits. To achieve power efficiency, the BB chain is designed to operate under an aggressive duty-cycling mode. The switch-on time of the BB chain is within 200 ns
30

Elektronicky řiditelný aktivní filtr 2. řádu / Electronically controlled active 2-nd order filter

Ševčík, Břetislav January 2009 (has links)
The diploma thesis deals with the modern design of the control circuits for digital potentiometers and their application in analog systems. The concept of the digital control is demonstrated on the electronically controlled active 2-nd order filter and programmable oscillator. The proposed design of the active filter describes a programmable active 2-nd order filter Sallen-Key. In this circuit it is possible independently programme cut-off frequency, Q factor and type of approximation with very good accuracy. The circuits of the designed filter and designed oscillator are simulated in PSpice (OrCAD), parasite effects and effects of the real parts are studied. Properties simulated circuits are compare with experimental results. These results appreciate quality and efficiency of the digitally controlled potentiometers in dependence on variable input circuit parameters. Integral part of this project is author’s universal control program called Digipot and comunications interface for many types of digital potentiometers with I2C, SPI or Up/Down interface. It is possible to use this device for many applications. The constructional details of the filter are presented at the end of this work. The software equipment is availability on enclosed CD.

Page generated in 0.0331 seconds