• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 10
  • 10
  • 10
  • 10
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The relationship between knee pain and body weight in early onset knee osteoarthritis

Takacs, Judit 14 July 2011 (has links)
Osteoarthritis (OA) is a group of diseases entailing degradation of joints, and has been designated as one of the key conditions for special attention during the World Health Organization’s Bone and Joint Decade (2000-2010) (Brooks & Hart, 2000). Research has demonstrated that body weight is the number one modifiable risk factor associated with the onset and progression of knee OA (Felson, 1996). However, exercise programs that aim to initiate weight loss and improve pain and function in knee OA often increase loading on the knee joint, contributing to degeneration of the knee and progression of the disease (Miyazaki et al, 2002). The introduction of a new anti-gravity treadmill, which utilizes a technology called Lower Body Positive Pressure (LBPP), allows the examination of the relationship between weight, knee pain and knee loading via knee acceleration during exercise. The null hypothesis states that there will be no significant difference in knee pain, knee function and knee joint acceleration when comparing full weight bearing and LBPP treadmill walking exercise in a young knee OA population. Twenty-two overweight/obese patients with mild or moderate early-onset knee OA were recruited to complete two 25 minute treadmill walking sessions (one full weight-bearing and one LBPP walking session) one week apart and two walkway walking sessions. Knee pain and knee acceleration were recorded. Paired t-tests and ANOVAs were used to compare conditions. On average, an LBPP of 12.3% body weight reduction reduced knee pain in our population. Knee pain was significantly lower during LBPP walking than during full weight-bearing walking. Knee acceleration decreased with increasing LBPP. Heel strike and toe-off data from walkway walking trials illustrated significantly different knee acceleration about the knee (slow walking loads were lower / fast walking were higher), as compared to treadmill walking sessions. This study illustrates that treadmill walking at a minimal level of LBPP can decrease knee pain and attenuate knee joint loads while allowing patients to complete exercise programs aimed at initiating weight loss and improving pain and function in knee OA. LBPP appears to be a promising tool for rehabilitation for those with painful knee OA and other lower body musculoskeletal conditions.
2

Managing knee osteoarthritis: the effects of anti-gravity treadmill exercise on joint pain and physical function

Christian, Mathew 28 August 2012 (has links)
Knee osteoarthritis (OA) is a degenerative joint condition characterized by progressive joint pain, swelling, and loss of muscle and joint function for which there is no known cure. Current research indicates that the most important modifiable risk factor for the development and progression of knee OA is obesity, a condition that is increasingly common in older adults. Established treatment guidelines for knee OA recommend regular exercise for disease management. However, for obese patients weight-bearing exercise elicits large joint forces that can exacerbate symptoms and influence disease progression. Using a new anti-gravity treadmill capable of generating a lifting force called lower body positive pressure (LBPP), obese patients with knee OA can engage in regular physical activity while minimizing joint loading. The aim of this study was to assess the effect of a 12-week, anti-gravity treadmill walking (AGTW) program on knee pain and function in obese older adults with knee OA. The alternate hypothesis was that there would be a difference between Knee Injury and Osteoarthritis Outcome Score (KOOS) results before and after the anti-gravity treadmill walking program. A group of 25 participants with a mean (SD) age of 64.2 (6.1) years and BMI of 33.0 (6.8) kg/m2 completed AGTW twice per week for 12 weeks at a body weight percentage that minimized knee pain. Knee symptoms and function (KOOS), knee pain during full weight-bearing treadmill walking (FTW), isokinetic quadriceps and hamstring muscle strength, cardiovascular fitness (YMCA submaximal cycle ergometer test), general health status (SF-12), and activity level (average daily pedometer readings) were assessed at baseline and following the completion of the 12-week program using paired t-tests and Wilcoxon signed rank sum tests (α = 0.05). Improvements between baseline and outtake were found in all KOOS subscales, as well as hamstring and quadriceps thigh muscle strength. Knee pain during full FWB and AGTW decreased following the 12-week program. No significant differences were found in cardiovascular fitness, SF-12 scores, or average daily pedometer readings. The results of this study suggest that anti-gravity treadmill walking increases thigh muscle strength, reduces knee pain, and increases functional capacity during daily activities, including FTW in older, obese individuals with knee OA. Anti-gravity treadmill technology has the potential to improve the health and functional capacity of at-risk knee OA individuals, and advance current methods of rehabilitation and long-term management of chronic symptomatic knee OA.
3

The relationship between knee pain and body weight in early onset knee osteoarthritis

Takacs, Judit 14 July 2011 (has links)
Osteoarthritis (OA) is a group of diseases entailing degradation of joints, and has been designated as one of the key conditions for special attention during the World Health Organization’s Bone and Joint Decade (2000-2010) (Brooks & Hart, 2000). Research has demonstrated that body weight is the number one modifiable risk factor associated with the onset and progression of knee OA (Felson, 1996). However, exercise programs that aim to initiate weight loss and improve pain and function in knee OA often increase loading on the knee joint, contributing to degeneration of the knee and progression of the disease (Miyazaki et al, 2002). The introduction of a new anti-gravity treadmill, which utilizes a technology called Lower Body Positive Pressure (LBPP), allows the examination of the relationship between weight, knee pain and knee loading via knee acceleration during exercise. The null hypothesis states that there will be no significant difference in knee pain, knee function and knee joint acceleration when comparing full weight bearing and LBPP treadmill walking exercise in a young knee OA population. Twenty-two overweight/obese patients with mild or moderate early-onset knee OA were recruited to complete two 25 minute treadmill walking sessions (one full weight-bearing and one LBPP walking session) one week apart and two walkway walking sessions. Knee pain and knee acceleration were recorded. Paired t-tests and ANOVAs were used to compare conditions. On average, an LBPP of 12.3% body weight reduction reduced knee pain in our population. Knee pain was significantly lower during LBPP walking than during full weight-bearing walking. Knee acceleration decreased with increasing LBPP. Heel strike and toe-off data from walkway walking trials illustrated significantly different knee acceleration about the knee (slow walking loads were lower / fast walking were higher), as compared to treadmill walking sessions. This study illustrates that treadmill walking at a minimal level of LBPP can decrease knee pain and attenuate knee joint loads while allowing patients to complete exercise programs aimed at initiating weight loss and improving pain and function in knee OA. LBPP appears to be a promising tool for rehabilitation for those with painful knee OA and other lower body musculoskeletal conditions.
4

Managing knee osteoarthritis: the effects of anti-gravity treadmill exercise on joint pain and physical function

Christian, Mathew 28 August 2012 (has links)
Knee osteoarthritis (OA) is a degenerative joint condition characterized by progressive joint pain, swelling, and loss of muscle and joint function for which there is no known cure. Current research indicates that the most important modifiable risk factor for the development and progression of knee OA is obesity, a condition that is increasingly common in older adults. Established treatment guidelines for knee OA recommend regular exercise for disease management. However, for obese patients weight-bearing exercise elicits large joint forces that can exacerbate symptoms and influence disease progression. Using a new anti-gravity treadmill capable of generating a lifting force called lower body positive pressure (LBPP), obese patients with knee OA can engage in regular physical activity while minimizing joint loading. The aim of this study was to assess the effect of a 12-week, anti-gravity treadmill walking (AGTW) program on knee pain and function in obese older adults with knee OA. The alternate hypothesis was that there would be a difference between Knee Injury and Osteoarthritis Outcome Score (KOOS) results before and after the anti-gravity treadmill walking program. A group of 25 participants with a mean (SD) age of 64.2 (6.1) years and BMI of 33.0 (6.8) kg/m2 completed AGTW twice per week for 12 weeks at a body weight percentage that minimized knee pain. Knee symptoms and function (KOOS), knee pain during full weight-bearing treadmill walking (FTW), isokinetic quadriceps and hamstring muscle strength, cardiovascular fitness (YMCA submaximal cycle ergometer test), general health status (SF-12), and activity level (average daily pedometer readings) were assessed at baseline and following the completion of the 12-week program using paired t-tests and Wilcoxon signed rank sum tests (α = 0.05). Improvements between baseline and outtake were found in all KOOS subscales, as well as hamstring and quadriceps thigh muscle strength. Knee pain during full FWB and AGTW decreased following the 12-week program. No significant differences were found in cardiovascular fitness, SF-12 scores, or average daily pedometer readings. The results of this study suggest that anti-gravity treadmill walking increases thigh muscle strength, reduces knee pain, and increases functional capacity during daily activities, including FTW in older, obese individuals with knee OA. Anti-gravity treadmill technology has the potential to improve the health and functional capacity of at-risk knee OA individuals, and advance current methods of rehabilitation and long-term management of chronic symptomatic knee OA.
5

Cardiorespiratory Responses to Graded Levels of Lower-body Positive Pressure During Dynamic Exercise in Man

Williamson, Jon W. (Jon Whitney) 12 1900 (has links)
Cardiorespiratory responses to incremental dynamic exercise were assessed across four different levels of lower-body positive pressure (LBPP) and, as a separate study, during constant load (i.e constant work rate) exercise below and above each subject's ventilatory threshold (VT), both with and without 45 torr of LBPP.
6

HUMAN CARDIOVASCULAR RESPONSES TO SIMULATED PARTIAL GRAVITY AND A SHORT HYPERGRAVITY EXPOSURE

Zhang, Qingguang 01 January 2015 (has links)
Orthostatic intolerance (OI), i.e., the inability to maintain stable arterial pressure during upright posture, is a major problem for astronauts after spaceflight. Therefore, one important goal of spaceflight-related research is the development of countermeasures to prevent post flight OI. Given the rarity and expense of spaceflight, countermeasure development requires ground-based simulations of partial gravity to induce appropriate orthostatic effects on the human body, and to test the efficacy of potential countermeasures. To test the efficacy of upright lower body positive pressure (LBPP) as a model for simulating cardiovascular responses to lunar and Martian gravities on Earth, cardiovascular responses to upright LBPP were compared with those of head-up tilt (HUT), a well-accepted simulation of partial gravity, in both ambulatory and cardiovascularly deconditioned subjects. Results indicate that upright LBPP and HUT induced similar changes in cardiovascular regulation, supporting the use of upright LBPP as a potential model for simulating cardiovascular responses to standing and moving in lunar and Martian gravities. To test the efficacy of a short exposure to artificial gravity (AG) as a countermeasure to spaceflight-induced OI, orthostatic tolerance limits (OTL) and cardiovascular responses to orthostatic stress were tested in cardiovascularly deconditioned subjects, using combined 70º head-up tilt and progressively increased lower body negative pressure, once following 90 minutes AG exposure and once following 90 minutes of -6º head-down bed rest (HDBR). Results indicate that a short AG exposure increased OTL of cardiovascularly deconditioned subjects, with increased baroreflex and sympathetic responsiveness, compared to those measured after HDBR exposure. To gain more insight into mechanisms of causal connectivity in cardiovascular and cardiorespiratory oscillations during orthostatic challenge in both ambulatory and cardiovascularly deconditioned subjects, couplings among R-R intervals (RRI), systolic blood pressure (SBP) and respiratory oscillations in response to graded HUT and dehydration were studied using a phase synchronization approach. Results indicate that increasing orthostatic stress disassociated interactions among RRI, SBP and respiration, and that dehydration exacerbated the disconnection. The loss of causality from SBP to RRI following dehydration suggests that dehydration also reduced involvement of baroreflex regulation, which may contribute to the increased occurrence of OI.
7

The Effect of Sequential Lower Body Positive Pressure on Forearm Blood Flow and Muscle Deoxygenation During Dynamic Handgrip Exercise

Ward, Aaron Tyler January 2016 (has links)
No description available.
8

The Effect of Bodyweight Support on Stride Frequency Self-Optimization Capacity in Female Novice Runners

Park, Joshua M. 16 September 2022 (has links)
No description available.
9

EFFECT OF LOWER BODY POSITIVE PRESSURE ON CARDIOVASCULAR RESPONSE AT VARIOUS DEGREES OF HEAD UP TILT

Kostas, Vladimir Ilyich 01 January 2012 (has links)
Various models of simulated weightlessness and resulting cardiovascular effects have been researched in the last 50 years of space exploration. Examples of such models are the Alter-G (Alt-G) treadmill used for body unweighting and head-up-tilt (HUT) model each providing similar cardiovascular effects, but differing in their stimulation of vestibular centers . Advantages of using the Alt-G include: use of lower body positive pressure (LBPP) to simulate hypogravity, it acts as a countermeasure to alleviate negative cardiovascular effects of standing and provides a constant vestibular stimulus. In addition, the Alt-G shorts themselves may be providing a certain degree of LBPP, acting as a compression garment. Therefore the purpose of this study was to determine the cardiovascular effects of Alt-G shorts and how effective they are as countermeasure to deconditioning effects of space flight. This study tested cardiovascular changes in 12 men and women at 0 and 80 degrees head-up-tilt (HUT0 / HUT80) with and without Alt-G shorts using 5-lead ECG, 10-lead impedance, heart rate, systolic and diastolic blood pressure measurements at finger and arm. The tilt-induced increase in mean heart rate (HR) was significantly smaller when subjects wore the Alt-G shorts. Shorts ended up reducing HR by 2.3 bpm in supine control and by 6.7 bpm at HUT80 (p0.05. Other cardiovascular variables did not show any significant effect from shorts. In conclusion, this study was in line with results from other studies that used compression garments to determine cardiovascular effects of LBPP.
10

Plasma Lactate Accumulation During Running with Body Weight Unloading by LBPP

Rasmussen, Nicole Nevitt 09 July 2013 (has links) (PDF)
At any given running speed, weight support with a lower body positive pressure (LBPP) device (i.e. Alter-G treadmill) reduces V̇O2. However, it is unknown how application of LBPP during running impacts lactate metabolism, specifically lactate threshold. Purpose: To determine if body weight unloading with the Alter-G treadmill alters lactate threshold. Methods. Maximal aerobic capacity (V̇O2max) and lactate threshold (LT) was determined in 8 male subjects on an Alter-G treadmill at 100% and 80% body weight loading at 0% grade in a randomized crossover design. V̇O2max tests started at 7 mile h-1 and increase speed by 1 mile h-1 every 2 min till voluntary exhaustion and were separated by a minimum of 7 days. LT tests started at 5 mile h-1 and increased speed to 6, 7, 7.5, 8.0, 8.5, 9.0 (additional stages increase speed by 0.5 mile h-1) every 3 min until the subject reached ¡Ö85% of V̇O2max. LT tests were separated by a minimum 3 days. V̇O2, heart rate (HR), mean arterial blood pressure (MAP) and changes in Hct, [Hb], and total protein ([TP]) were determined on separate days in a randomized crossover design. Plasma lactate concentrations were determined from venous blood samples (4 ml) obtained at rest and during the last minute of each exercise stage. Lactate threshold was determined from a log-log plot of lactate concentration (mM) and relative V̇O2 (ml O2 min-1 kg-1 BM). Results. V̇O2max determined during running at 100% and 80% loading were similar (52.3 ± 0.9 and 52.7 ± 0.7 ml O2 min-1 kg-1 BM, respectively). The energy cost of running at 9 mile h-1 (all subjects completed stages between 5 and 9 mile h-1) was reduced by 12% at 80% body weight (37.2 ± 2.9 ml O2 min-1 kg-1 BM) compared to running at 100% body weight (42.3 ± 1.7 ml O2 min-1 kg-1 BM, <0.05). However, plasma lactate at 9 mile h-1 was similar during 80% and 100% body weight running (3.4 ± 0.4 and 3.1 ± 0.7 mM, respectively). Plasma lactate at a given V̇O2 was higher (p < 0.05) while running at 80% body weight compared to 100% body weight running. Calculated LT at 100% BW loading (36.3 ± 1.3 ml O2 min-1 kg-1 BM) was higher than 80% BW loading (32.2 ± 1.8 ml O2 min-1 kg-1 BM, p<0.05). During running at 80% BW HR was reduced compared to 100% BW running (p<0.05) however the MAP response was similar. During exercise the reduction in PV, at any given V̇O2 was larger at 80% BW compared to 100% BW running (p<0.001). Conclusion. During running, BW unloading with LBPP decreased the energy cost of exercise but not lactate levels. Body weight unloading caused a lowering of the LT. The reduction in whole body energy cost was not associated with a reduction in the lactate production since plasma lactate accumulation at a given speed was similar with and without LBPP.

Page generated in 0.1095 seconds