• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 6
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 26
  • 11
  • 9
  • 9
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A comparison of data-driven and model-driven approaches to brightness temperature diurnal cycle interpolation

Van den Bergh, F, Van Wyk, MA, Van Wyk, BJ, Udahemuka, G 09 1900 (has links)
This paper presents two new schemes for interpolating missing samples in satellite diurnal temperature cycles (DTCs). The first scheme, referred to here as the cosine model, is an improvement of the model proposed in [2] and combines a cosine and exponential function for modelling the DTC. The second scheme uses the notion of a Reproducing Kernel Hilbert Space (RKHS) interpolator [1] for interpolating the missing samples. The application of RKHS interpolators to the DTC interpolation problem is novel. Results obtained by means of computer experiments are presented.
2

Surface-atmosphere interactions in the thermal infrared (8 - 14um)

McAtee, Brendon Kynnie January 2003 (has links)
Remote sensing of land surface temperature (LST) is a complex task. From a satellite-based perspective the radiative properties of the land surface and the atmosphere are inextricably linked. Knowledge of both is required if one is to accurately measure the temperature of the land surface from a space-borne platform. In practice, most satellite-based sensors designed to measure LST over the surface of the Earth are polar orbiting. They scan swaths of the order of 2000 km, utilizing zenith angles of observation of up to 60°. As such, satellite viewing geometry is important when comparing estimates of LST between different overpasses of the same point on the Earth's surface. In the case of the atmosphere, the optical path length through which the surfaceleaving radiance propagates increases with increasing zenith angle of observation. A longer optical path may in turn alter the relative contributions which molecular absorption and emission processes make to the radiance measured at the satellite sensor. A means of estimating the magnitudes of these radiative components in relation to the viewing geometry of the satellite needs to be developed if their impacts on the at-sensor radiance are to be accurately accounted for. The problem of accurately describing radiative transfer between the surface and the satellite sensor is further complicated by the fact that the surface-leaving radiance itself may also vary with sensor viewing geometry. Physical properties of the surface such as emissivity are known to vary as the zenith angle of observation changes. The proportions of sunlit and shaded areas with the field-of-view of the sensor may also change with viewing geometry depending on the type of cover (eg vegetation), further impacting the surface emissivity. / Investigation of the change in surface-leaving radiance as the zenith angle of observation varies is then also important in developing a better understanding of the radiative interaction between the land surface and the atmosphere. The work in this study investigates the atmospheric impacts using surface brightness temperature measurements from the ATSR-2 satellite sensor in combination with atmospheric profile data from radiosondes and estimates of the downwelling sky radiance made by a ground-based radiometer. A line-by-line radiative transfer model is used to model the angular impacts of the atmosphere upon the surfaceleaving radiance. Results from the modelling work show that if the magnitude of the upwelling and downwelling sky radiance and atmospheric transmittance are accurately known then the surface-emitted radiance and hence the LST may be retrieved with negligible error. Guided by the outcomes of the modelling work an atmospheric correction term is derived which accounts for absorption and emission by the atmosphere, and is based on the viewing geometry of the satellite sensor and atmospheric properties characteristic of a semi-arid field site near Alice Springs in the Northern Territory (Central Australia). Ground-based angular measurements of surface brightness temperature made by a scanning, self calibrating radiometer situated at this field site are then used to investigate how the surface-leaving radiance varies over a range of zenith angles comparable to that of the ATSR-2 satellite sensor. / Well defined cycles in the angular dependence of surface brightness temperature were observed on both diumal and seasonal timescales in these data. The observed cycles in surface brightness temperature are explained in terms of the interaction between the downwelling sky radiance and the angular dependence of the surface emissivity. The angular surface brightness temperature and surface emissivity information is then applied to derive an LST estimate of high accuracy (approx. 1 K at night and 1-2 K during the day), suitable for the validation of satellite-derived LST measurements. Finally, the atmospheric and land surface components of this work are combined to describe surface-atmosphere interaction at the field site. Algorithms are derived for the satellite retrieval of LST for the nadir and forward viewing geometries of the ATSR-2 sensor, based upon the cycles in the angular dependence of surface brightness temperature observed in situ and the atmospheric correction term developed from the modelling of radiative transfer in the atmosphere. A qualitative assessment of the performance of these algorithms indicates they may obtain comparable accuracy to existing dual angle algorithms (approx. 1.5 K) in the ideal case and an accuracy of 3-4 K in practice, which is limited by knowledge of atmospheric properties (eg downwelling sky radiance and atmospheric transmittance), and the surface emissivity. There are, however, strong prospects of enhanced performance given better estimates of these physical quantities, and if coefficients within the retrieval algorithms are determined over a wider range of observation zenith angles in the future.
3

Remote Sensing for Analysis of Relationships between Land Cover and Land Surface Temperature in Ten Megacities

Bobrinskaya, Maria January 2012 (has links)
Urbanization is one of the most significant phenomena of the anthropogenic influence on the Earth’s environment. One of the principal results of the urbanization is the creation of megacities, with their local climate and high impact on the surrounding area. The design and evolution of an urban area leads to higher absorption of solar radiation and heat storage in which is the foundation of the urban heat island phenomenon. Remote sensing data is a valuable source of information for urban climatology studies. The main objective of this thesis research is to examine the relationship between land use and land cover types and corresponding land surface temperature, as well as the urban heat island effect and changes in these factors over a 10 year period. 10 megacities around the world where included in this study namely Beijing (China), Delhi (India), Dhaka (Bangladesh), Los Angeles (USA), London (UK), Mexico City (Mexico), Moscow (Russia), New York City (USA), Sao Paulo (Brazil) and Tokyo (Japan). Landsat satellite data were used to extract land use/land cover information and their changes for the abovementioned cities. Land surface temperature was retrieved from Landsat thermal images. The relationship between land surface temperature and landuse/land-cover classes, as well as the normalized vegetation index (NDVI) was analyzed. The results indicate that land surface temperature can be related to land use/land cover classes in most cases. Vegetated and undisturbed natural areas enjoy lower surface temperature, than developed urban areas with little vegetation. However, the cities show different trends, both in terms of the size and spatial distribution of urban heat island. Also, megacities from developed countries tend to grow at a slower pace and thus face less urban heat island effects than megacities in developing countries.
4

EFFECTS OF SPINAL CORD INJURY ON ACTIVATION OF THE SPINAL EJACULATION GENERATOR

Lord, Tyler M. 27 May 2020 (has links)
No description available.
5

A relação entre a temperatura radiométrica de superfície (Land Surface Temperature-LST), índice de vegetação (Normalizes Diference Vegetation Index-NDVI) e os diferentes padrões de uso da terra do município de São Paulo / The relationship between surface radiometric temperature (Land Surface Temperature-LST), vegetation index (Normalized Vegetation Index diference-NDVI) and the different land use patterns in São Paulo-SP.

Jesus, Bruna Luiza Pereira de 15 September 2015 (has links)
Esse trabalho tem como objetivo compreender as relações entre a Land Surface Temperature (LST), Normalized Difference Vegetation Índex (NDVI) e os padrões do uso da terra do município de São Paulo no período de 1985 a 2010. Analisou-se 15 bairros, nos quais foram extraídas 45 amostras aleatórias de diferentes padrões de uso da terra; subdivididas em baixo padrão, médio padrão e médio alto padrão. Com o aporte de geotecnologia, foi feita a extração dos dados das imagens de satélite Landsat 5 (TM) e das Ortofotos do ano de 2010. O comportamento das amostras variou de acordo como os diferentes perfis dos grupos analisados. O grupo de baixo padrão foi o que apresentou as maiores amplitudes térmicas, ausência de arborização urbana atreladas a um baixo padrão construtivo. O grupo de médio padrão é caracterizado pela predominância de área verticalizada e apresenta uma arborização urbana escassa em meio a uma malha urbana consolidada. O grupo de médio alto padrão foi o que mais apresentou arborização urbana, distribuída de forma homogênea na maioria das amostras, portanto foi o grupo que teve baixas amplitudes térmicas e o índice de Normalized Difference Vegetation Index (NDVI) com pouca variação. Os testes mostraram fortes correlações negativas entre as amostras de Land Surface Temperature (LST) e o índice de Normalized Difference Vegetation Index (NDVI), sendo -0,58 em 1985, -0,43 em 2004 e -0,82 em 2010. Os diferentes padrões de uso da terra, relacionados à temperatura de superfície, e o índice de vegetação, aliado à preocupação com o planejamento ambiental, deve resultar na melhoria da qualidade de vida da população. Esta pesquisa faz parte do Projeto Temático processo FAPESP 08/58161 -1, \"Assessment of Impacts and Vulnerability to Climate Change in Brazil and strategies for Adaptation options\", Component 5: Vulnerability of the metropolitan region of São Paulo to climate Change. / This study aims to understand the relationship between Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI) and the patterns of land use in the municipality of São Paulo, from 1985 to 2010. A totoal of 45 random samples were extracted from the 15 districts used in this study, with different patterns of land use which were subdivided into three different clases: low-end, middle and middle-high. Geospatial approaches allowed the extraction of satellite image data from Landsat 5 data (TM) and from Orthophotos from 2010. The behavior of the samples varied accordingly to the different group profiles. The low-end group presented the highest thermal amplitudes and more significant absence of urban vegetation linked, both to low urbanization and construction standards. The average standard group is characterized by the predominance of vertical buildings and lacks urban trees amidst a consolidated urban landscape. The average-high standard group displayed the highest concentration of green urban areas, distributed homogeneously in most samples, so this group presented low variations both in temperature amplitude and in the Normalized Difference Vegetation Index (NDVI). The correlation tests showed strong negative correlations between samples of Land Surface Temperature (LST) and the NDVI samples, of -0.58 in 1985, -0.43 in 2004 and -0.82 in 2010. Understanding the relations between the different patterns of land use, surface temperature and the NDVI (with due concern for environmental planning) is an important step in the identification and rehabilitation of enviromentally. This research is part of the Thematic Project FAPESP 08/58161 -1 process, \"Assessment of Impacts and Vulnerability to Climate Change in Brazil and strategies for Adaptation options\", Component 5: Vulnerability of the metropolitan region of São Paulo to climate Change.
6

A relação entre a temperatura radiométrica de superfície (Land Surface Temperature-LST), índice de vegetação (Normalizes Diference Vegetation Index-NDVI) e os diferentes padrões de uso da terra do município de São Paulo / The relationship between surface radiometric temperature (Land Surface Temperature-LST), vegetation index (Normalized Vegetation Index diference-NDVI) and the different land use patterns in São Paulo-SP.

Bruna Luiza Pereira de Jesus 15 September 2015 (has links)
Esse trabalho tem como objetivo compreender as relações entre a Land Surface Temperature (LST), Normalized Difference Vegetation Índex (NDVI) e os padrões do uso da terra do município de São Paulo no período de 1985 a 2010. Analisou-se 15 bairros, nos quais foram extraídas 45 amostras aleatórias de diferentes padrões de uso da terra; subdivididas em baixo padrão, médio padrão e médio alto padrão. Com o aporte de geotecnologia, foi feita a extração dos dados das imagens de satélite Landsat 5 (TM) e das Ortofotos do ano de 2010. O comportamento das amostras variou de acordo como os diferentes perfis dos grupos analisados. O grupo de baixo padrão foi o que apresentou as maiores amplitudes térmicas, ausência de arborização urbana atreladas a um baixo padrão construtivo. O grupo de médio padrão é caracterizado pela predominância de área verticalizada e apresenta uma arborização urbana escassa em meio a uma malha urbana consolidada. O grupo de médio alto padrão foi o que mais apresentou arborização urbana, distribuída de forma homogênea na maioria das amostras, portanto foi o grupo que teve baixas amplitudes térmicas e o índice de Normalized Difference Vegetation Index (NDVI) com pouca variação. Os testes mostraram fortes correlações negativas entre as amostras de Land Surface Temperature (LST) e o índice de Normalized Difference Vegetation Index (NDVI), sendo -0,58 em 1985, -0,43 em 2004 e -0,82 em 2010. Os diferentes padrões de uso da terra, relacionados à temperatura de superfície, e o índice de vegetação, aliado à preocupação com o planejamento ambiental, deve resultar na melhoria da qualidade de vida da população. Esta pesquisa faz parte do Projeto Temático processo FAPESP 08/58161 -1, \"Assessment of Impacts and Vulnerability to Climate Change in Brazil and strategies for Adaptation options\", Component 5: Vulnerability of the metropolitan region of São Paulo to climate Change. / This study aims to understand the relationship between Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI) and the patterns of land use in the municipality of São Paulo, from 1985 to 2010. A totoal of 45 random samples were extracted from the 15 districts used in this study, with different patterns of land use which were subdivided into three different clases: low-end, middle and middle-high. Geospatial approaches allowed the extraction of satellite image data from Landsat 5 data (TM) and from Orthophotos from 2010. The behavior of the samples varied accordingly to the different group profiles. The low-end group presented the highest thermal amplitudes and more significant absence of urban vegetation linked, both to low urbanization and construction standards. The average standard group is characterized by the predominance of vertical buildings and lacks urban trees amidst a consolidated urban landscape. The average-high standard group displayed the highest concentration of green urban areas, distributed homogeneously in most samples, so this group presented low variations both in temperature amplitude and in the Normalized Difference Vegetation Index (NDVI). The correlation tests showed strong negative correlations between samples of Land Surface Temperature (LST) and the NDVI samples, of -0.58 in 1985, -0.43 in 2004 and -0.82 in 2010. Understanding the relations between the different patterns of land use, surface temperature and the NDVI (with due concern for environmental planning) is an important step in the identification and rehabilitation of enviromentally. This research is part of the Thematic Project FAPESP 08/58161 -1 process, \"Assessment of Impacts and Vulnerability to Climate Change in Brazil and strategies for Adaptation options\", Component 5: Vulnerability of the metropolitan region of São Paulo to climate Change.
7

Air Surface Temperature Estimation Using MODIS Land Surface Temperature Data in Northwest Vietnam

Phan, Thanh Noi 21 November 2018 (has links)
No description available.
8

Apport des observations satellitaires hyperspectrales infrarouges IASI au-dessus des continents dans le modèle météorologique à échelle convective AROME / Contribution of IASI IR hyperspectral satellite observations over land in the convective scale AROME model

Boukachaba, Niama 25 September 2017 (has links)
Le sondeur infrarouge hyperspectral IASI (Interféromètre Atmosphérique de Sondage Infrarouge, développé conjointement par le CNES et EUMETSAT et embarqué à bord des satellites défilants Metop A, Metop B et très prochainement Metop C (2006, 2012 et 2018, respectivement)) apporte une très grande quantité d’informations permettant, entre autres, de décrire finement les paramètres de surface (température et émissivité sur une large gamme de longueurs d’onde). Néanmoins, les prévisions de température des surfaces continentales ne sont pas encore suffisamment réalistes pour utiliser l’information infrarouge en basse troposphère et proche de la surface au-dessus des continents car les radiances sensibles à ces régions sont fortement affectées par la variation des paramètres de surface (tels que la température, l’émissivité et l’humidité) et par la présence des nuages. Ceci peut conduire à un écart parfois important entre les observations et les simulations, conduisant à un rejet important des observations et à une mauvaise détection nuageuse. De ce fait, l’objectif principal de la thèse est l’amélioration des analyses et des prévisions par l’augmentation des observations IASI assimilées sur les continents dans le modèle à aire limitée AROME. La première partie du travail s’est focalisée sur l’identification du canal IASI le plus approprié à la restitution de la tempèrature de surface (Ts). En poursuivant les travaux de thèse de [Vincensini, 2013], cinq canaux IASI localisés entre 901.50 cm−1 et 1115.75 cm−1 ont été sélectionnés pour une meilleure prise en compte des basses couches de l’atmosphère plus particulièrement en termes de température et d’humidité. La restitution de la Ts s’est faite par inversion de l’équation du transfert radiatif [Karbou et al., 2006] en utilisant le modèle de transfert radiatif RTTOV et l’atlas d’émissivité développé par l’université de Wisconsin. Le canal IASI 1194 (943.25 cm−1) a été retenu pour la restitution des Ts suite à une série de comparaisons effectuées entre la Ts restituée à partir des différents canaux IASI sélectionnés et celle de l’ébauche. Aussi, des comparaisons ont été réalisées entre les Ts restituées à partir de IASI et celles restituées à partir de SEVIRI et de AVHRR. La seconde partie du travail a reposé sur l’étude de l’impact de l’utilisation de la Ts restituée à partir du canal IASI 1194 dans les processus de simulation et d’assimilation des canaux IASI utilisés dans les modèles de prévision numérique du temps de Météo-France (AROME et ARPEGE). La Ts restituée à partir du canal IASI 1194 a été intégrée dans le modèle RTTOV pour améliorer les simulations des autres observations IASI sensibles à la surface. L’impact sur la détection nuageuse issue de l’algorithme de [McNally and Watts, 2003] a également été évalué. Par la suite, d’autres expériences ont été menés pour étudier l’impact de l’utilisation des Ts restituées sur l’assimilation de données et sur l’amélioration de la sélection des canaux IASI sur terre dans le modèle AROME. L’impact sur les analyses et les prévisions ont été également décrits. / An essential component of the numerical weather forecast is the analysis of the atmosphere, the necessary step for the definition of the initial conditions of forecasts. This analysis uses in-situ data as well as satellite observations. The current high-spectral resolution advanced infrared sounder generation includes in particular IASI (Infrared Atmospheric Sounding Interferometer, developed by CNES / EUMETSAT) onboard polar orbiting MetOp satellites. These sounders provide a large amount of information allowing to describe accurately surface parameters (such as land surface temperature ’LST’ and surface emissivity on a wide range of wavelengths). However, the forecast of continental surface temperature is not realistic enough to use the infrared information in the lower troposphere and close to the surface over continents because radiances sensitive to these regions are strongly affected by the variation of surface parameters (e.g. LST, surface emissivity and humidity) and cloud cover. This issue could produce a large difference between the observations and the simulations, also a bad cloud detection, which prompts the system to reject the observations and limits the use of these data. This PhD work aims to improve the analyses and the forecasts by increasing the assimilation of IASI observations over land in the convectivescale AROME model of Météo-France. The first part of study was focused on the identification of the appropriate IASI surface-sensitive channel for LST retrieval. By pursuing the approach developed by [Vincensini, 2013] to find surface temperature from a combination of channels, a new channel selection over land was build, to better analyse the lower layers of the atmosphere, in particular in term of temperature and humidity. LST was extracted from IASI radiances using radiative transfer equation inversion [Karbou et al., 2006], RTTOV model and a surface emissivity atlas developed by the Space Science and Engineering Center at University of Wisconsin. IASI channel 1194 was then selected to retrieve LST as a result of several comparisons with background and other IASI, SEVIRI and AVHRR LST retrievals. The retrieved LST from this channel was then used in RTTOV model to improve the simulation of IASI surface-sensitive infrared observations. The impact on the McNally & Watts cloud detection scheme has been evaluated with more clear channels inside clear pixel with LST retrieval. Data assimilation experiments using the retrieved LST and enhancing the IASI channel selection over land were carried out in the AROME-France model. Improvement of humidity analyses and forecasts will also be described.
9

Estimation of the near-surface air temperature and soil moisture from satellites and numerical modelling in New Zealand

Sohrabinia, Mohammad January 2013 (has links)
Satellite observations provide information on land surface processes over a large spatial extent with a frequency dependent on the satellite revisit time. These observations are not subject to the spatial limitations of the traditional point measurements and are usually collected in a global scale. With a reasonable spatial resolution and temporal frequency, the Moderate Resolution Imaging Spectroradiometer (MODIS) is one of these satellite sensors which enables the study of land-atmospheric interactions and estimation of climate variables for over a decade from remotely sensed data. This research investigated the potential of remotely sensed land surface temperature (LST) data from MODIS for air temperature (Ta) and soil moisture (SM) estimation in New Zealand and how the satellite derived parameters relate to the numerical model simulations and the in-situ ground measurements. Additionally, passive microwave SM product from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) was applied in this research. As the first step, the MODIS LST product was validated using ground measurements at two test-sites as reference. Quality of the MODIS LST product was compared with the numerical simulations from the Weather Research and Forecasting (WRF) model. Results from the first validation site, which was located in the alpine areas of the South Island, showed that the MODIS LST has less agreement with the in-situ measurements than the WRF model simulations. It turned out that the MODIS LST is subject to sources of error, such as the effects of topography and variability in atmospheric effects over alpine areas and needs a careful pre-processing for cloud effects and outliers. On the other hand, results from the second validation site, which was located on the flat lands of the Canterbury Plains, showed significantly higher agreement with the ground truth data. Therefore, ground measurements at this site were used as the main reference data for the accuracy assessment of Ta and SM estimates. Using the MODIS LST product, Ta was estimated over a period of 10 years at several sites across New Zealand. The main question in this part of the thesis was whether to use LST series from a single MODIS pixel or the series of a spatially averaged value from multiple pixels for Ta estimation. It was found that the LST series from a single pixel can be used to model Ta with an accuracy of about ±1 ºC. The modelled Ta in this way showed r ≈ 0.80 correlation with the in-situ measurements. The Ta estimation accuracy improved to about ±0.5 ºC and the correlation to r ≈ 0.85 when LST series from spatially averaged values over a window of 9x9 to 25x25 pixels were applied. It was discussed that these improvements are due to noise reduction in the spatially averaged LST series. By comparison of LST diurnal trends from MODIS with Ta diurnal trends from hourly measurements in a weather station, it was shown that the MODIS LST has a better agreement with Ta measurements at certain times of the day with changes over day and night. After estimation of Ta, the MODIS LST was applied to derive the near-surface SM using two Apparent Thermal Inertia (ATI) functions. The objective was to find out if more daily LST observations can provide a better SM derivation. It was also aimed to identify the potential of a land-atmospheric coupled model for filling the gaps in derived SM, which were due to cloud cover. The in-situ SM measurements and rainfall data from six stations were used for validation of SM derived from the two ATI functions and simulated by the WRF model. It was shown that the ATI function based on four LST observations has a better ability to derive SM temporal profiles and is better able to detect rainfall effects. Finally, the MODIS LST was applied for spatial and temporal adjustment of the near-surface SM product from AMSR-E passive microwave observations over the South Island of New Zealand. It was shown that the adjustment technique improves AMSR-E seasonal trends and leads to a better matching with rainfall events. Additionally, a clear seasonal variability was observed in the adjusted AMSR-E SM in the spatial domain. Findings of this thesis showed that the satellite observed LST has the potential for the estimation of the land surface variables, such as the near-surface Ta and SM. This potential is greatly important on remote and alpine areas where regular measurements from weather stations are not often available. According to the results from the first validation site, however, the MODIS LST needs a careful pre-processing on those areas. The concluding chapter included a discussion of the limitations of remotely sensed data due to cloud cover, dense vegetation and rugged topography. It was concluded that the satellite observed LST has the potential for SM and Ta estimations in New Zealand. It was also found that a land-atmospheric model (such as the WRF coupled with the Noah and surface model) can be applied for filling the gaps due to cloud cover in remotely sensed variables.
10

Ein Beitrag zum Wissensmanagement in der Bahnsicherungstechnik

Krahl, Claudia 11 October 2022 (has links)
Angesichts der Brisanz des Themas Wissensmanagement für den Bereich der Bahnsicherungstechnik aufgrund der Gefahr des Wissensverlustes im Zuge des demografischen Wandels beschäftigt sich die vorliegende Dissertation mit der Konzeptionierung eines unterstützenden Systems dafür. Es werden strukturelle Mindestanforderungen als Erfolgsvoraussetzung hergeleitet und entsprechende Handlungsempfehlungen abgeleitet. Die Arbeit verdeutlicht den großen Stellenwert des Menschen, denn ohne ihn und dessen Akzeptanz des Systems sowie Motivation, sich zu beteiligen, wird es trotz aller technischer und organisatorischer Maßnahmen zum Verlust seiner bis dahin nicht erfassten, für andere verständlich aufbereiteten und teilbaren Erfahrungen kommen. Wie die Vorgehensweise bezüglich solch einer Wissensmobilisierung aussehen kann, zeigt diese Arbeit. Eine Strategie zur flächendeckenden Einführung von entsprechenden Wissensmanagementmaßnahmen mit Schwerpunkt des Einsatzes einer informationstechnisch unterstützten Plattform sowie der Ansatz einer Wirtschaftlichkeitsbetrachtung runden die Ausführungen ab.

Page generated in 0.049 seconds