• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 236
  • 35
  • 31
  • 31
  • 17
  • 14
  • 11
  • 8
  • 7
  • 6
  • 4
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 443
  • 63
  • 59
  • 56
  • 54
  • 53
  • 52
  • 49
  • 46
  • 45
  • 45
  • 44
  • 42
  • 41
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Anomaly Detection and Root Cause Analysis for LTE Radio Base Stations / Anomalitetsdetektion och grundorsaksanalys för LTE Radio Base-stationer

López, Sergio January 2018 (has links)
This project aims to detect possible anomalies in the resource consumption of radio base stations within the 4G LTE Radio architecture. This has been done by analyzing the statistical data that each node generates every 15 minutes, in the form of "performance maintenance counters". In this thesis, we introduce methods that allow resources to be automatically monitored after software updates, in order to detect any anomalies in the consumption patterns of the different resources compared to the reference period before the update. Additionally, we also attempt to narrow down the origin of anomalies by pointing out parameters potentially linked to the issue. / Detta projekt syftar till att upptäcka möjliga anomalier i resursförbrukningen hos radiobasstationer inom 4G LTE Radio-arkitekturen. Detta har gjorts genom att analysera de statistiska data som varje nod genererar var 15:e minut, i form av PM-räknare (PM = Performance Maintenance). I denna avhandling introducerar vi metoder som låter resurser över-vakas automatiskt efter programuppdateringar, för att upptäcka eventuella avvikelser i resursförbrukningen jämfört med referensperioden före uppdateringen. Dessutom försöker vi också avgränsa ursprunget till anomalier genom att peka ut parametrar som är potentiellt kopplade till problemet.
272

Social Intelligence for Cognitive Radios

Kaminski, Nicholas James 26 February 2014 (has links)
This dissertation introduces the concept of an artificial society based on the use of an action based social language combined with the behavior-based approach to the construction of multi-agent systems to address the problem of developing decentralized, self-organizing networks that dynamically fit into their environment. In the course of accomplishing this, social language is defined as an efficient method for communicating coordination information among cognitive radios inspired by natural societies. This communication method connects the radios within a network in a way that allows the network to learn in a distributed holistic manner. The behavior-based approach to developing multi-agent systems from the field of robotics provides the framework for developing these learning networks. In this approach several behaviors are used to address the multiple objectives of a cognitive radio society and then combined to achieve emergent properties and behaviors. This work presents a prototype cognitive radio society. This society is implemented, using low complexity hardware, and evaluated. The work does not focus on the development of optimized techniques, but rather the complementary design of techniques and agents to create dynamic, decentralized self-organizing networks / Ph. D.
273

E-SCALE: Energy Efficient Scalable Sensor Coverage with Cell-phone App Using LTE

Mitra, Rupendra Nath January 2015 (has links)
No description available.
274

Achieving Efficient Spectrum Usage in Passive and Active Sensing

Wang, Huaiyi 18 May 2017 (has links)
No description available.
275

BER performance of 2x2 and 4x4 transmit diversity MIMO in downlink LTE

Uyoata, U.E., Noras, James M. 12 1900 (has links)
No / Multi-antenna(MIMO) techniques are reported to improve the performance of radio communication systems in terms of their capacity and spectral efficiency. In combination with appropriate receiver technologies they can also provide savings in the required transmit power with respect to target bit error rate. Long Term Evolution(LTE), one of the candidates for fourth generation(4G) mobile communication systems has MIMO as one of its underlying technologies and ITU defined channel models for its propagating environment. This paper undertakes a comprehensive verification of the performance of transmit diversity MIMO in the downlink sector of LTE. It uses models built using MATLAB to carry out simulations. It is deduced that generally increasing transmit diversity configuration from 2x2 to 4x4 offers SNR savings in flat fading channels though with a user equipment moving at 30km/hr, deploying 2x2 offers higher SNR saving below 7dB. Furthermore bandwidth variation has minimal effect on the BER performance of transmit MIMO except at SNR values above 9dB while the gains of higher modulation schemes come with a transmit power penalty.
276

Planificación y Optimización Automática de Redes Móviles LTE

Osa Ginés, Vicente 17 June 2013 (has links)
Osa Ginés, V. (2013). Planificación y Optimización Automática de Redes Móviles LTE [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/29755
277

Broadcasting in 4G mobile broadband networks and its evolution towards 5G

CALABUIG GASPAR, JORGE 31 March 2015 (has links)
One of the challenges of the mobile industry is to cope with the growth of mobile traffic demand expected for the next years, primarily driven by the increasing usage of mobile video services. Indeed, the existence of increasingly powerful terminals is encouraging the consumption of high-quality video content. Usually, video services are identified with linear Television (TV) and scheduled broadcast (point-to-multipoint (p-t-m)) distribution. However, the consumption of video content over mobile networks is different from traditional fixed TV because contents are mainly consumed on-demand with unicast point-to-point (p-t-p) connections. Then, the convergence of linear TV and on-demand content delivery represents a challenge that requires a combined broadcast/unicast transmission model. This dissertation addresses the use of broadcasting technologies for the provision of mobile multimedia services in Fourth Generation (4G) mobile broadband networks and beyond. Specifically, the dissertation focuses on the broadcast technology included in 4G Long Term Evolution (LTE) and LTE Advanced (LTE-A) networks, known as Enhanced Multicast Broadcast Multimedia Services (eMBMS). It analyses the benefits of the eMBMS physical layer aspects regarding Multimedia Broadcast Multicast Services over a Single Frequency Network (MBSFN) deployments and identifies the current limitations of eMBMS at physical layer by comparing with the broadcast technology of the other 4G mobile system, the Institute of Electrical and Electronics Engineers (IEEE) 802.16m standard. Those limitations are the use of a dedicated carrier and Multiple-Input Multiple-Output (MIMO) techniques for broadcast transmissions. Our investigations employ a complete simulation platform including link-level and system-level simulations to evaluate the performance of broadcast transmissions in these real technologies. The research on eMBMS services is aimed at finding the optimum delivery of streaming and file download services focusing on the Radio Resource Management (RRM) problem and trade-off between Physical layer – Forward Error Correction (PHY-FEC) and Application Layer - Forward Error Correction (AL-FEC). Concerning streaming services, results show that the use of AL-FEC increases the coverage level and, then, the maximum service data rate. The gain due to AL-FEC is greater in scenarios with high mobility users, although, this gain is limited if low zapping times are desired. Regarding file delivery services, this dissertation analyses the duration of the transmission required to guarantee the correct file reception and the reduction in the mean throughput of unicast users with different delivery modes. They are the unicast delivery, the eMBMS delivery and a hybrid approach, which combines a first eMBMS delivery with a postdelivery error repair phase with unicast transmissions. Our results show that the hybrid delivery is the most efficient configuration in terms of file download time, although it further reduces unicast performance. / Calabuig Gaspar, J. (2015). Broadcasting in 4G mobile broadband networks and its evolution towards 5G [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/48561
278

Multi-Antenna OFDM System Using Coded Wavelet with Weighted Beamforming

Anoh, Kelvin O.O., Asif, Rameez, Abd-Alhameed, Raed, Rodriguez, Jonathan, Noras, James M., Jones, Steven M.R., Hussaini, Abubakar S. 04 1900 (has links)
Yes / A major drawback in deploying beamforming scheme in orthogonal frequency division multiplexing (OFDM) is to obtain the optimal weights that are associated with information beams. Two beam weighting methods, namely co-phasing and singular vector decomposition (SVD), are considered to maximize the signal beams for such beamforming scheme. Initially the system performance with and without interleaving is investigated using coded fast Fourier transform (FFT)-OFDM and wavelet-based OFDM. The two beamforming schemes are applied to the wavelet-based OFDM as confirmed to perform better than the FFT-OFDM. It is found that the beam-weight by SVD improves the performance of the system by about 2dB at the expense of the co-phasing method. The capacity performances of the weighting methods are also compared and discussed.
279

Latency Study and System Design Guidelines for Cooperative LTE-DSRC Vehicle-to-Everything (V2X) Communications including Smart Antenna

Choi, Junsung 25 January 2017 (has links)
Vehicle-related communications are a key application to be enabled by Fifth Generation (5G) wireless systems. The communications enabled by the future Internet of Vehicles (IoV) that are connected to every wireless device are referred to as Vehicle-to-Everything (V2X) communications. A major application of V2X communication systems will be to provide emergency warnings. This thesis evaluates Long-Term Evolution (LTE) and Dedicated Short Range Communications (DSRC) in terms of service quality and latency, and provides guidelines for design of cooperative LTE-DSRC systems for V2X communications. An extensive simulation analysis shows that (1) the number of users in need of warning has an effect on latency, and more so for LTE than for DSRC, (2) the DSRC priority parameter has an impact on the latency, and (3) wider system bandwidths and smaller cell sizes reduce latency for LTE. The end-to-end latency of LTE can be as high as 1.3 s, whereas the DSRC latency is below 15 ms for up to 250 users. Also, improving performance of systems is as much as important as studying about latency. One method to improving performance is using a better suitable antenna for physical communication. The mobility of vehicles results in a highly variable propagation channel that complicates communication. Use of a smart, steerable antenna can be one solution. The most commonly used antennas for vehicular communication are omnidirectional. Such antennas have consistent performance over all angles in the horizontal plane; however, rapidly steerable directional antennas should perform better in a dynamic propagation environment. A linear array antenna can perform dynamical appropriate azimuth pattern by having different weights of each element. The later section includes (1) identifying beam pattern parameters based on locations of a vehicular transmitter and fixed receivers and (2) an approach to find weights of each element of linear array antenna. Through the simulations with our approach and realistic scenarios, the desired array pattern can be achieved and array element weights can be calculated for the desired beam pattern. Based on the simulation results, DSRC is preferred to use in the scenario which contains large number of users with setup of higher priority, and LTE is preferred to use with wider bandwidth and smaller cell size. Also, the approach to find the controllable array antenna can be developed to the actual implementation of hardware with USRP. / Master of Science
280

Resilient Waveform Design for OFDM-MIMO Communication Systems

Shahriar, Chowdhury M. R. 23 October 2015 (has links)
This dissertation addresses physical layer security concerns, resiliency of the Orthogonal Frequency Division Multiplexing (OFDM) and the Multiple Input Multiple Output (MIMO) systems; the `de-facto' air-interface of most wireless broadband standards including LTE and WiMAX. The major contributions of this dissertation are: 1) developing jamming taxonomy, 2) proposing OFDM and MIMO equalization jamming attacks and countermeasures, 3) developing antijam (AJ) MIMO systems, and 4) designing null space projected overlapped-MIMO radar waveform for spectrum sharing between radar and communications system. First, we consider OFDM systems under various jamming attacks. Previous research is focused on jamming OFDM data transmissions. We focus on energy efficient attacks that can disrupt communication severely by exploiting the knowledge of target waveform. Specifically, these attacks seek to manipulate information used by the equalization algorithm to cause errors to a significant number of symbols, i.e., pilot tones jamming and nulling. Potential countermeasures are presented in an attempt to make OFDM waveform robust and resilient. The threats were mitigated by randomizing the location and value of pilot tones, causing the optimal attack to devolve into barrage jamming. We also address the security aspects of MIMO systems in this dissertation. All MIMO systems need a method to estimate and equalize channel, whether through channel reciprocity or sounding. Most OFDM-based MIMO systems use sounding via pilot tones. Like OFDM attacks, this research introduces MIMO channel sounding attack, which attempts to manipulate pilot tones to skew the channel state information (CSI) at the receiver. We describe methods of designing AJ MIMO system. The key insight is that many of the theoretical concepts learned from transmit beamforming and interference alignment (IA) in MIMO systems can be applied to the field of AJ and robust communications in the presence of jammers. We consider a realistic jamming scenario and provide a `receiver-only' and a transmitter `precoding' technique that allow a pair of two-antenna transceivers to communicate while being jammed by a malicious non-cooperative single-antenna adversary. Finally, we consider designing a collocated MIMO radar waveform, which employs a new MIMO architecture where antenna arrays are allowed to overlap. This overlapped-MIMO radar poses many advantages including superior beampattern and improvement in SNR gain. We combine this radar architecture with a projection-based algorithm that allows the radar waveform to project onto the null space of the interference channel of MIMO communications system, thus enabling the coexistence of radar and communications system. / Ph. D.

Page generated in 0.0282 seconds