Spelling suggestions: "subject:"lungs lander"" "subject:"lunch lander""
1 |
MEASUREMENT OF TEMPERATURE ON THE LEG OF A LUNAR LANDERDylan Thomas Graulich (16679985) 02 August 2023 (has links)
<p> The last decade has seen a proliferation of spaceflight ventures, sparking a new commercial Space Race. Companies ranging in size from SpaceX, Blue Origin, and Virgin Galactic to startups with just a few employees have submitted designs for a Lunar Lander. As the world shifts its attention back to the Moon, reducing mass and increasing safety in these systems has become vital. One avenue to weight reduction may be the legs of the lander. This experiment measures the heating of lunar lander legs from interaction with the lander’s rocket exhaust plume. The temperature of the legs was measured using thermocouples and thermochromic paint. Thirty-two thermocouples were attached in a grid pattern to generate a temperature map of the leg. Removable thermochromic paint shields provide an immediate temperature indicator so that leg distance and angle can be quickly adjusted without having to view the thermocouple temperature data. Heat transfer is also measured on the shield, finding radiation and convection. Ground tests show that the test methods, instruments, and hardware are reliable. Ground tests also show that the most significant heating and convection in ground-leg interactions occur on the bottom foot of the lander, with little heating on the top half of the leg. Further study of this heating will be vital for the future of lunar research </p>
|
2 |
UKF-SLAM Implementation for the Optical Navigation System of a Lunar LanderGarcia, Laura January 2017 (has links)
No description available.
|
3 |
A Method for Standardization within the Payload Interface Definition of a Service-Oriented Spacecraft using a Modified Interface Control Document / En metod för standardisering av nyttolastgränsyta för en service-orienterad rymdfarkost via ett modifierat dokumentet för gränssnittskontrollKlicker, Laura January 2017 (has links)
With a big picture view of increasing the accessibility of space, standardization is applied within a service-oriented space program. The development of standardized spacecraft interfaces for numerous and varied payloads is examined through the lens of the creation of an Interface Control Document (ICD) within the Peregrine Lunar Lander project of Astrobotic Technologies, Inc. The procedure is simple, transparent, and adaptable; its applicability to other similar projects is assessed. / För en ökad tillgång till rymden finns det behov av standardisering för en förbättrad service. Utvecklingen av standardiserade rymdfarkostgränsytor för flera och olika nyttolaster har undersökts via ett dokumentet för gränssnittskontroll (ICD) inom projektet Peregrine Lunar Lander för Astrobotic Technologies, Inc. Proceduren är enkel, transparent och anpassningbar; dess användning för andra liknande projekt har värderats.
|
4 |
How do prizes induce innovation? learning from the Google Lunar X-prizeKay, Luciano 07 July 2011 (has links)
Inducement prizes-where cash rewards are given to motivate the attainment of targets--have been long used to encourage scientific research, develop technological innovations, or stimulate individuals, groups, and communities to accomplish diverse goals. Lately, prizes have increasingly attracted the attention of policy-makers, among others, due to their potential to induce path-breaking innovations and accomplish related goals. Academic research, however, has barely investigated these prizes in spite of their long history, recent popularity, and notable potential.
This research investigates prizes and the means by which they induce innovation. It uses an empirical, multiple case-study methodology, a new model of innovation applied to prizes, and multiple data sources to investigate three cases of recent aerospace technology prizes: a main case study, the Google Lunar X Prize (GLXP) for robotic Moon exploration; and two pilot cases, the Ansari X Prize (AXP) for the first private reusable manned spacecraft and the Northrop Grumman Lunar Lander Challenge (NGLLC) for flights of reusable rocket-powered vehicles.
The investigation unveils the dynamics of prizes and contributes a better understanding of their potential and disadvantages in a context in which more traditional mechanisms are used to induce innovation. This research shows that prizes are a more complex mechanism and their investigation requires analyzing entrant- and context-level factors generally not considered by the literature. Prizes complement and not replace patents and other incentive mechanisms.
The incentives offered by prizes attract entrants with diverse characteristics, including unconventional entrants--individuals and organizations generally not involved with the prize technologies. Entrants are generally attracted by the non-monetary benefits of participation and the potential market value of the technologies involved in competitions. Many more volunteers, collaborators, and partners also participate indirectly and support official entries as they also perceive opportunities to accomplish their personal and organizational goals. The monetary reward is important to position the competition in the media and disseminate the idea of the prize.
Prizes can induce increasing R&D activities and re-direct industry projects to target diverse technological goals, yet the evolution of prize competitions and quality of the technological outputs is generally difficult to anticipate. The overall organization of prize R&D activities and their outputs depend on entrant-level factors and can only be indirectly influenced by setting specific competition rules. The most remarkable characteristic of prize R&D activities is their interaction with fundraising efforts which, in some circumstances, may constrain the activities of entrants.
Prizes can also induce innovation over and above what would have occurred anyway, yet their overall effect depends significantly on the characteristics of the prize entrants and the evolution of the context of the competition. The ability of prizes to induce innovation is larger when there are larger prize incentives, more significant technology gaps implicit in the prize challenge, and open-ended challenge definitions. To successfully induce technological breakthroughs, prizes may require complementary incentives (e.g. commitments to purchase technology) or support (e.g. seed funding.)
Prizes are particularly appropriate to, for example, explore new, experimental methods and technologies that imply high-risk R&D; induce technological development to break critical technological barriers; accelerate technological development to achieve higher performance standards; and, accelerate diffusion, adoption, and/or commercialization of technologies. They involve, however, higher programmatic risks than other more traditional mechanisms and their routine use, and/or challenge definitions that overlap, can weaken the incentive power of the mechanism. Successful implementation of competitions requires many parameters to be properly set.
|
Page generated in 0.086 seconds