Spelling suggestions: "subject:"long injury""
21 |
Investigation of the Pathogenesis of Transfusion Related Acute Lung Injury in a Unique Murine ModelHicks, Wyenona A. 02 July 2004 (has links)
No description available.
|
22 |
THE CYSTIC FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR (CFTR) CHANNEL AS A HOST DETERMINANT OF INFLUENZA SEVERITYWoods, Parker 08 August 2016 (has links)
No description available.
|
23 |
The Anti-Inflammatory Mechanisms of the Flavonoid Apigenin <i>In Vitro</i> and <i>In Vivo</i>Nicholas, Courtney January 2009 (has links)
No description available.
|
24 |
PERFLUOROCHEMICAL AUGMENTED INTRATRACHEAL DELIVERY OF ANTIOXIDANT ENZYMES AND GENES TO ATTENUATE OXIDATIVE STRESS-INDUCED LUNG AND RESPIRATORY MUSCLE ALTERATIONSMalone, Daniel Joseph January 2009 (has links)
Supraphysiologic concentrations of oxygen are used in the management of critically ill patients across the lifespan. However, hyperoxia (HO) results in alveolar- capillary membrane destruction, pulmonary edema, pleural effusions, infiltration and activation of inflammatory cells, altered pulmonary mechanics and gas exchange prompting increased loading of the respiratory muscle. These abnormalities of pulmonary structure and function increase the work of breathing necessitating increased respiratory muscle force production to maintain alveolar ventilation. When the load placed on the respiratory muscle pump exceeds its capacity, respiratory failure develops and is ultimately fatal unless therapeutic interventions are able to reduce the ventilatory load. The use of perfluorochemical (PFC) liquids as a respiratory medium has been effective in the treatment of respiratory distress syndrome and acute lung injury (ALI) requiring mechanical ventilation. Mechanistically, by eliminating the air-liquid interface, PFC liquids reduce surface tension enabling lung volume recruitment at low inspiratory pressures and have high respiratory gas solubility which supports gas exchange. Additionally, through mechanical as well as cytoprotective mechanisms, intrapulmonary PFC liquids reduce inflammatory cell activation and recruitment. Cell culture, animal and human studies have suggested that acute and chronic lung injury secondary to prolonged HO may be ameliorated by administration of antioxidant enzymes (AOE), with superoxide dismutases (SOD) having significant protective effects. Because the lung is exposed to the highest O2 concentrations, a logical strategy to reduce HO-induced damage is to specifically target antioxidant enzymes to the lungs. However, intratracheal delivery of AOE by vehicles like normal saline may transiently impair lung function and be poorly distributed. PFC fluids have previously been shown to be effective respiratory media for pulmonary administration of various drugs. The premise of the proposed studies are to to characterize hyperoxic lung injury in a spontaneously breathing animal model and to develop therapeutic strategies to reduce oxidatative stress and supplement endogenous AOE. With respect to the diaphragm, we reason that HO-induced lung damage and oxidative stress will increase contractile demand of the diaphragm. If AOE activity could be increased in the lungs and respiratory muscles with AOE proteins or the genes encoding these enzymes, then cell damage, inflammatory changes, damage to the lung and respiratory "pump" might be ameliorated or prevented. The results show that PFC and SOD can attenuate the HO- induced decline in lung mechanics and gas exchange, ameliorate the inflammatory and oxidative stress profiles, and promote lung and muscle structural integrity resulting in a survival benefit. These findings support the novel application of PFC liquids in a spontaneously breathing model and support the concept that PFC preconditioning and AOE supplementation play a protective role by reducing mortality and morbidity in hyperoxic lung injury. / Physiology
|
25 |
Using MicroRNAs 146a and 155 to Mitigate Barotrauma and Atelectrauma in Simulated Ventilator-Induced Lung InjuryChang, Christopher J. 23 August 2018 (has links)
No description available.
|
26 |
Die Rolle des Transkriptionsfaktors NF-κB bei der mechanischen Dehnung von pulmonalen StrukturzellenMaser, Franziska 07 July 2010 (has links) (PDF)
Obwohl die künstliche bzw. mechanische Beatmung bei der Therapie von ALI / ARDS eine wichtige und bedeutende Rolle spielt, kann sie selbst eine akute Lungen-schädigung auslösen oder bestehende pulmonale Beeinträchtigungen verstärken. Zentraler Schädigungsmechanismus ist die alveoläre Überdehnung durch hohe Ti-dalvolumina. Selbst bei der Anwendung kleiner, protektiver Tidalvolumina in Lungen mit einem nur geringen Anteil belüfteter Alveolen kann es in diesen zu alveolärer Überdehnung kommen. Diese Überdehnung führt einerseits zu mechanisch induzier-te Apoptose sowie Nekrose und andererseits zu einer mechanisch induzierten Ver-änderung der Mediatorenfreisetzung hin zu einem pro-inflammatorischen Muster. Da der Transkriptionsfaktor NF-κB zahlreiche Mediatoren aktiviert bzw. von ihnen beeinf-lusst werden kann, nimmt er in diesem Geschehen eine ganz besondere Schlüssel-position ein.
In der vorliegenden Arbeit wird der Hypothese nachgegangen, ob die NF-κB-Aktivierung bei der mechanischen Dehnung und dem daraus resultierenden inflam-matorischen Verhalten von pulmonalen Strukturzellen verändert wird und in wie weit ein Zusammenhang zwischen Dehnung, Zellschädigung und NF-κB besteht. Dafür wurden sowohl frisch isolierte alveoläre Ratten-Typ-II Zellen, Zellen der hu-man-alveolaren Epithelzelllinie A549 sowie Lungen- Fibroblasten der Zell-Linie Wi 38 untersucht. Alle drei Zellarten wurden auf einem speziellen elastischen Silikonboden von 6er-Well-Platten inkubiert, wo sie mit Hilfe des Flexercell-Stretch-Gerätes (FX 3000) als Zellmonolayer equibiaxial für 24 Stunden gedehnt wurden. Auch die zeitliche Abhängigkeit der NF-κB-Expression von der mechanischen Deh-nung wurde untersucht. Dabei konnte festgestellt werden, dass ein Zusammenhang zwischen NF-κB-Aktivierung, Zellschädigung und mechanischer Dehnung existiert. Wobei bei unter-schiedlichen Zellarten auch variierende Ergebnisse beobachtet werden konnten. Im Zusammenhang mit anderen aus unserer Forschungsgruppe und in der Literatur stammenden Erkenntnissen konnte so eine Verknüpfung zwischen NF-κB-Aktivierung, Zytokinfreisetzung und inflammatorischer pulmonaler Reaktion nachge-wiesen werden.
|
27 |
Genetic variation involving IRAK-1 and EC-SOD in sepsis induced acute lung injury /Arcaroli, John Joseph. January 2008 (has links)
Thesis (Ph.D. in Clinical Science) -- University of Colorado Denver, 2008. / Typescript. Includes bibliographical references (leaves 96-120). Free to UCD Anschutz Medical Campus. Online version available via ProQuest Digital Dissertations;
|
28 |
Airway Epithelial Cells as Targets of Glucocorticoid Therapy in Inflammatory Lung DiseasesKlaßen, Carina 10 February 2017 (has links)
No description available.
|
29 |
Multiscale Modeling of Airway Inflammation Induced by Mechanical VentilationKoombua, Kittisak 27 May 2009 (has links)
Mechanical ventilation (MV) is a system that partially or fully assists patients whose respiratory system fails to achieve a gas exchange function. However, MV can cause a ventilator-associated lung injury (VALI) or even contribute to a multiple organ dysfunction syndrome (MODS) in acute respiratory distress syndrome (ARDS) patients. Despite advances in today technologies, mortality rates for ARDS patient are still high. A better understanding of the interactions between airflow from mechanical ventilator and the airway could provide useful information used to develop a better strategy to ventilate patients. The mechanisms, which mechanical ventilation induces airway inflammation, are complex processes and cover a wide range of spatial scales. The multiscale model of the airway have been developed combining the computational models at organ, tissue, and cellular levels. A model at the organ level was used to study behaviors of the airway during mechanical ventilation. Strain distributions in each layer of the airway were investigated using a model at the tissue level. The cellular inflammatory responses during mechanical ventilation were investigated through the cellular automata (CA) model incorporating all biophysical processes during inflammatory responses. The multiscale modeling framework started by obtaining airway displacements from the organ-level model. They were then transferred to the tissue-level model for determining the strain distributions in each airway layer. The strain levels in each layer were then transferred to the cellular-level model for inflammatory responses due to strain levels. The ratio of the number of damage cells to healthy cells was obtained through the cellular-level model. This ratio, in turn, modulated changes in the Young’s modulus of elasticity at the tissue and organ levels. The simulation results showed that high tidal volume (1400 cc) during mechanical ventilation can cause tissue injury due to high concentration of activated immune cells and low tidal volume during mechanical ventilation (700 cc) can prevent tissue injury during mechanical ventilation and can mitigate tissue injury from the high tidal volume ventilation. The multiscale model developed in this research could provide useful information about how mechanical ventilation contributes to airway inflammation so that a better strategy to ventilate patients can be developed.
|
30 |
Efeitos do exercício físico aeróbico na lesão pulmonar aguda induzida por lipopolissacarídeo em camundongos / Effect of aerobic exercice on acute lung injury induced by lipopolysaccharide in miceGonçalves, Cintia Tokio Reis 13 June 2012 (has links)
Introdução: A prática regular de exercício tem sido grandemente associada a efeitos benéficos em doenças pulmonares crônicas como asma e doença pulmonar obstrutiva crônica. Poucos estudos têm avaliado os benefícios do exercício aeróbico na lesão pulmonar aguda (LPA). Objetivo: Neste estudo nós investigamos os mecanismos envolvidos no papel do exercício físico em diminuir os danos pulmonares causados pela LPA induzida por lipopolissacarídeo (LPS). Métodos: Camundongos Balb/c foram divididos em quatro grupos: Controle (CTR), Exercício (Exe), LPS e Exercício+LPS (Exe+LPS). Os animais dos grupos Exe e Exe+LPS foram treinados em baixa intensidade por 60 minutos/dia, 3x/semana, durante 5 semanas. A instilação intratraqueal de LPS (200 /animal) foi realizada 48 horas após o último teste físico nos grupos LPS e Exe+LPS. Vinte e quatro horas após a instilação de LPS nós analisamos os níveis de óxido nítrico exalado (NO), a mecânica respiratória e a densidade de neutrófilos no tecido pulmonar. Nós analisamos também os níveis de extravasamento de proteína, contagem de células totais e diferenciais e os níveis de IL-1, IL-6, KC, IL-10 and TNF- no lavado bronco-alveolar (LBA). Os níveis de IL-6 e IL-10 também foram avaliados no plasma e tecido pulmonar. A expressão de receptores de glicocorticóide (Gre) e da enzima superóxido dismutase (SOD) foi analisada no tecido pulmonar. As atividades enzimáticas de glutationa peroxidade (GPX), catalase (CAT), glutationa redutase (GR), e SOD foram determinadas no homogenato de pulmão por espectrofotometria. O nível de malonaldeído (MDA) foi quantificado no homogenato de pulmão. Resultados: A instilação de LPS resultou em aumento nos níveis de NO exalado (p<0,01), aumento do número de células e neutrófilos no LBA (p<0,001), aumento do número de neutrófilos no parênquima pulmonar (p<0,001), aumento dos valores de resistência e elastância pulmonar (p=0,01), aumento dos níveis de extravasamento de proteína (p0,02), aumento dos níveis de IL-6 e IL-10 no plasma (p<0,02) e aumento dos níveis de IL-1, IL-6 e KC no LBA (p0,005), comparado ao grupo CTR. O exercício aeróbico (grupo Exe+LPS) diminuiu significativamente os níveis de NO exalado (p=0,006), a densidade de neutrófilos no parênquima pulmonar (p=0,004), os valores de resistência e elastância pulmonar (p = 0,003), aumentou a expressão de IL-6, IL-10 e Gre no tecido pulmonar (p0,04) e aumentou o nível de IL- 1 no LBA (p=0,04) comparado ao grupo LPS. Conclusão: Nossos resultados mostram que o exercício desenvolve um importante papel em proteger o pulmão dos efeitos inflamatórios da LPA induzida por LPS. Os efeitos do exercício são principalmente mediados pelo aumento da expressão de citocinas antiinflamatórias, sugerindo que o exercício aeróbico pode modular o balanço inflamatório, antiinflamatório na fase inicial na SARA. / Background: The regular practice of exercise has been increasingly associated to benefic effects on chronic pulmonary conditions such as asthma and chronic obstructive pulmonary disease. Few studies have also reported the effects of aerobic exercise on acute lung injury (ALI). Objective: In this study we investigated the mechanisms involved in the role of exercise in attenuating the pulmonary changes in a model of lipopolysaccharide (LPS)-induced ALI. Methods: BALB/c mice were divided into four groups: Control (CTR), Exercise (Exe), LPS, and Exercise + LPS (Exe+LPS). Mice from Exe and Exe+LPS groups were trained at low intensity exercise for 60 minutes/day, 3 days/week, during 5 weeks. Intratracheal instillation of LPS (200/mouse) was performed 48 hours after the last physical test in the LPS and Exe+LPS groups. Twenty-four hours after LPS instillation we measured exhaled nitric oxide (NO), respiratory mechanics, and the density of neutrophils in lung tissue. We further analyzed protein leakage, total and differential cell counts and the levels of IL-1, IL-6, KC, IL-10 and TNF- in bronchoalveolar lavage fluid (BALF). IL-6 and IL-10 levels were also evaluated in serum and lung tissue. The expression of glucocorticoid receptors (Gre) and superoxide dismutase (SOD) was analyzed in lung tissue. Enzymatic activity of glutathione peroxidase (GPX), catalase (CAT), glutathione reductase (GR) and SOD was determined in lung homogenates by spectrophotometry. The level of malondialdehyde (MDA) was quantified in lung homogenates. Results: LPS instillation resulted in increased levels of exhaled NO (p<0.01), higher number of total cells and neutrophils in the BALF (p<0.001), higher number of neutrophils in the lung parenchyma (p<0.001), higher values of pulmonary resistance and elastance (p=0.01), increase of protein leakage (p0.02), increase of IL-6 and IL-10 level in serum (p<0.02) and increase in IL-1, IL-6 and KC levels in BALF (p0.005), compared to the CTR group. Aerobic exercise (Exe+LPS group) resulted in significantly lower exhaled NO levels (p=0.006), lower density of neutrophils in the lung parenchyma (p=0.004), lower pulmonary resistance and elastance values (p = 0.003), increased expression of IL-6, IL-10 and Gre in lung tissue (p0.04) and increased IL-1 level in BALF (p=0.04) compared to the LPS group. Conclusion: Our results show that exercise plays an important role in protecting the lung from the inflammatory effects of LPS-induced ALI. The effects of exercise are mainly mediated by the increased expression of anti-inflammatory cytokines, suggesting that aerobic preconditioning can modulate the inflammatory-anti-inflammatory balance in the early phase of ARDS.
|
Page generated in 0.0366 seconds