Spelling suggestions: "subject:"médecine génératrice"" "subject:"médecine régénérative""
1 |
Ingénierie tissulaire : Mise en oeuvre d’un procédé de fabrication d’une matrice oesophagienne biologique / Esophageal tissue engineeringLuc, Guillaume 16 December 2016 (has links)
Objectifs : L’objectif principal de ce travail était de fabriquer une matrice œsophagienne décellularisée tubulaire implantable dans un modèle porcin. Méthodes : Des œsophages de porcs étaient prélevés et décellularisés selon un protocole basé sur l’Acide Déoxycholique. La décellularisation devait être confirmée par analyse histologique et quantification de l’ADN résiduel. L’évaluation des Glycosaminoglycanes, des protéines de structures (Collagène, Elastine, Fibronectine et Laminine) était réalisée par étude histologique et immunohistochimique sur les MD. Les tests mécaniques étaient réalisés en traction circonférentielle, longitudinale, et à l’éclatement. La biocompatibilité des MD a été évaluée in vivo sur un modèle murin. L’ensemencement était réalisé par des Adipose Derived Stem Cells (ADSCs) appliquées sous forme de feuillets sur les MD tubulaires. L’efficience de la maturation des MD in vivo était réalisée sur un modèle murin. L’implantation des MD était faite après une œsophagectomie par laparotomie dans un modèle porcin. Résultats : 103 œsophages ont été décellularisés. Les MD ne présentaient pas de noyau résiduel et leur quantification d’ADN résiduel était inférieure à 50 ng/mg de tissu sec. Les caractéristiques biologiques (quantité, qualité et distribution) étaient préservées après la décellularisation. Le comportement mécanique des MD était similaire aux œsophages natifs. L’ensemencement par des ADSCs via l’application de feuillets sur les MD permettait une cellularisation des couches externes. La maturation dans le grand épiploon permettait la vascularisation des MD sans bénéfice d’un ensemencement préalable. L’œsophagectomie était réalisée sur 6 porcs. Un individu est décédé, et 4 porcs ont présenté des complications postopératoires. La régénération tissulaire des MD était confirmée un mois après leur implantation. Conclusion : La substitution œsophagienne par une MD après une œsophagectomie est réalisable sur un modèle porcin / Decellularized matrixes (DM) are commonly used to facilitate a constructive remodeling response in several types of tissue, including the esophagus. Surgical procedure of the esophagus is often complicated by stricture, but preclinical studies have shown that the use of a DM can mitigate stricture and promote a constructive outcome. Recognizing the potential benefits of DM derived from homologous tissue (i.e., site-specific ECM), the objective of the present study was to prepare, characterize, and assess the in-vivo remodeling properties of DM from porcine esophagus. The developed protocol for esophageal DM preparation is compliant with previously established criteria of decellularization and results in a scaffold that maintains important biologic components and an ultrastructure consistent with a good mechanical behavior. Stem cells remained viable when seeded upon the esophageal DM in vitro, and the in-vivo host response showed a pattern of constructive remodeling when implanted in soft tissue.
|
2 |
Étude des cellules souches mésenchymateuses du tissu adipeux de patients sains ou dysmétaboliques en médecine regénératriceSorroza Martinez, Luis Fernando 08 April 2025 (has links)
L'obésité est une maladie métabolique caractérisée par une inflammation chronique de bas grade affectant le microenvironnement du tissu adipeux à partir duquel des cellules stromales/souches (ASC) peuvent être extraites à des fins de reconstruction de substituts autologues. À ce jour la littérature fournit très peu d'information concernant l'impact de l'obésité sur le potentiel thérapeutique des ASC dans un contexte de génie tissulaire. Pour cette raison, en considérant l'incidence croissante de l'obésité dans le monde, il est important de comprendre l'impact de l'obésité sur le potentiel de prolifération et de différenciation des ASC afin de favoriser leur utilisation autologue en génie tissulaire. Notre hypothèse est que le potentiel de prolifération et de différenciation adipogénique et ostéogénique des ASC de donneurs obèses seront significativement réduits lors du processus d'amplification cellulaire et de reconstruction tissulaire en 3D. À l'aide de deux cohortes, une de donneurs atteints d'obésité (ASC-Ob) et une autre de donneurs métaboliquement sains (ASC-nOb), des ASC ont été extraites du tissu adipeux sous-cutané afin de déterminer l'impact de l'obésité sur leur potentiel de prolifération et de différenciation adipogénique et ostéogénique dans un contexte de génie tissulaire. Ce projet aborde aussi le concept de l'impact de l'obésité sur la quantité et la qualité de la matrice extracellulaire (MEC) produite par les ASC humaines durant la période de reconstruction de tissus conjonctifs et adipeux par la technique d'auto-assemblage. Cette dernière permet d'induire la différenciation des ASC humaines tout en favorisant la sécrétion, l'assemblage et le dépôt de la MEC par les cellules elles-mêmes créant un microenvironnement 3D représentatif d'un tissu natif. Nos résultats ont montré que le potentiel de prolifération in vitro des ASC-Ob est maintenu sur sept passages en culture et ne montre pas de différence significative comparativement à celui des ASC-nOb. Toutefois, nos données indiquent que l'obésité diminue significativement le potentiel adipogénique et ostéogénique des ASC lors de l'auto-assemblage. De plus, suite à la reconstruction de substituts conjonctifs à partir d'ASC-Ob, les ASC-Ob ont donné des tissus qui ont tendance à être plus minces et qui sont plus contractiles. Ce travail a permis d'identifier des aspects affectés des ASC par l'obésité au niveau de leur potentiel de différenciation adipogénique et ostéogénique dans un contexte de génie tissulaire. Ainsi, dans de futures études, il serait possible d'employer des méthodes de culture et de préconditionnement cellulaire alternatives, permettant de maximiser le potentiel de différenciation des ASC humaines provenant de tout donneur, afin de favoriser leur application autologue en médecine régénératrice. / Obesity is a metabolic disease characterized by a chronic low-grade inflammation affecting the adipose tissue microenvironment from which stromal/stem cells (ASC) can be extracted for autologous reconstruction. To date, the literature provides very little information on the impact of obesity on the therapeutic potential of ASC in a tissue engineering context. For this reason, considering the increasing incidence of obesity globally, it is important to understand the impact of obesity on the proliferation and differentiation potential of ASC to promote their autologous use in tissue engineering. We hypothesize that the proliferation, as well as the adipogenic and osteogenic potentials of ASC from obese donors will be significantly reduced compared to the ASC from non-obese donors during the in vitro amplification and tissue reconstruction processes. ASC were extracted from human subcutaneous adipose tissue, from obese (ASC-Ob) and non-obese donors (ASC-nOb), to determine the impact of obesity on their proliferative capacities, as well as their adipogenic and osteogenic potential in a 3D microenvironment. This project also aims to explore the impact of obesity on the quantity and quality of the extracellular matrix (ECM) produced by human ASC during tissue reconstruction by the self- assembly technique. The latter allows inducing the differentiation of human ASC while promoting the secretion, assembly, and deposition of the ECM by the cells themselves, creating a 3D microenvironment. Our results showed that the in vitro proliferation potential of ASC-Ob is maintained over seven passages in culture, showing no significant difference compared to the ASC-nOb group. However, our data indicate that obesity significantly decreases the adipogenic and osteogenic potentials of hASC during tissue reconstruction. Finally, upon reconstruction of connective tissues using ASC-Ob, the latter resulted in tissues that tended to be thinner and significantly more contractile. This work helped identify the impact of obesity on ASC for adipose and bone-like tissue reconstruction using the self-assembly method. Thus, in the future, it will be possible to develop alternative cell culture and preconditioning methods, to maximize the differentiation potential of ASC from any donor to favor their autologous use for regenerative medicine applications.
|
3 |
Le discours de l'innovation technologique en médecine régénératriceFayon, Didier 09 1900 (has links)
Le discours sur l’innovation oriente la recherche scientifique médicale publique vers un développement technologique et économique à court terme. À ce titre, la médecine régénératrice est une thérapie innovatrice marquée par une logique d’accumulation spéculative qui porte à la fois sur les cellules humaines et sur la façon de mener la recherche. Or, une réorganisation de la recherche scientifique liée à une nouvelle conception économique de la science et de la technologie ainsi qu’un rôle différent attribué à l’État constituent le cadre institutionnel contemporain qui émerge à la fin des années 1970. Le changement induit par cette idée d’innovation et sur lequel s’attarde ce mémoire porte non pas sur l’usage ou la destination de la science, mais sur l’extension du raisonnement économique. Celui-ci ne survient pas à l’étape du développement, après que la recherche ait été effectuée en vertu du modèle de la « Big Science ». Au contraire, il remonte du marché pour s’installer très tôt au stade de la compréhension des mécanismes biologiques et dans un espace qui relève de la propriété collective : le laboratoire public. Le passage du caractère « exogène » à « endogène » de la recherche scientifique publique vis-à-vis de l’économie est au cœur d’une discussion sur l’hégémonie de la logique de marché. / This dissertation discusses the idea of technological innovation in regenerative medicine in Canada. While this potentially groundbreaking therapy is publicly funded and at an early stage of the understanding of cellular processes, the analysis shows that it is already concerned with the marketing of the scientific work. This raises questions about how public laboratories framed by a scientific research closely tied up with economic concerns and with a shift in the role of the State carry speculation and lead to a technological oriented production of knowledge. This writing doesn’t debate science as a mean or science as an end. It is rather about the extension of the economic reasoning. Indeed, the market’s reading grid as the starting point is the story of the hegemony of a specific logic which turns regenerative medicine research into an economic venture.
|
4 |
Conception et élaboration d'échafaudages de nanofibres à dégradation contrôlée pour des applications en médecine régénératrice vasculaire / Design and elaboration of degradation-controlled nanofiber scaffold for vascular regenerative medicine applicationSabbatier, Gad 30 June 2015 (has links)
L’absence de croissance en monocouche des cellules endothéliales sur la paroi des prothèses vasculaires est une des causes d’échec de leur implantation chez l’humain. Des études précédentes ont montré que le recouvrement de ces prothèses par un échafaudage de nanofibres d’acide polylactique (PLA), fabriqué par un système de filage par jet d’air innovant, peut être utilisé pour promouvoir la croissance des cellules endothéliales de façon adéquate. Ainsi, le caractère dégradable d’un matériau comme le PLA permettrait son remplacement graduel par la matrice extra-cellulaire produite par les cellules. D’autre part, la réussite d’une transition entre les nanofibres dégradables et la matrice extra-cellulaire nécessite un remplacement contrôlé et approprié. Or, la dégradation des nanofibres de PLA, dépendant de ses séquences stéréochimiques, est généralement trop longue et peut induire une cytotoxicité relative pendant sa dégradation. Dans ce contexte, les études de cette thèse ont pour objectifs de mieux comprendre la formation des fibres lors du filage, d’optimiser la fabrication des échafaudages permettant ainsi la création de nanofibres d’autres polymères, puis, de concevoir des nanofibres provenant d’un polymère mieux adapté à nos besoins, d’évaluer leur mécanisme de dégradation et sa cytotoxicité durant sa dégradation. Les travaux d’optimisation du système de filage ont démontré que la concentration avec un effet prépondérant. Ainsi, la mesure de la viscosité permet de trouver les paramètres adéquats pour le filage de polymère. Ensuite, un poly(L-lactide) semi-cristallin (PLLA) et un terpolymère de poly(lactide-co-ε-caprolactone) (PLCL) dédié pour des applications vasculaires ont été synthétisés et filés par jet d’air. Ces échantillons ont été dégradés en solution aqueuse et caractérisés par des méthodes physico-chimiques afin de mieux comprendre leurs mécanismes de dégradation et mis en présence de cellules endothéliales pour évaluer leur cytotoxicité. La comparaison entre les échafaudages des deux polymères a montré des comportements singuliers en dégradation, dépendants des caractéristiques thermiques des polymères. De plus, ces mécanismes de dégradation des nanofibres ont une influence directe sur la sensibilité des cellules endothéliales face aux produits de dégradation. En conclusion, ces travaux de doctorat présentent une solution prometteuse pour améliorer les prothèses vasculaires et qui pourrait être appliquée pour résoudre plusieurs problématiques en médecine régénératrice. / The absence of neo-endothelium on the intimal surface of vascular substitutes is known to be one cause of failure upon implantation of these prostheses in humans. Previous studies have shown that the coating of these substitutes with a nanofiber scaffold, made with an innovative air spinning device, can be used to promote a suitable endothelial cells growth. On one hand, the degradable feature of material as PLA enable the progressive replacement of the scaffold by the extracellular matrix of cells. On the other hand, the success of this replacement between degradable nanofibers and the extracellular matrix requires to be appropriate and controlled. Yet, the PLA nanofiber degradation process, which depends on its stereosequences, is generally too long for this application and could involve cell sensitivity during the degradation. In this context, studies from this thesis aim to understand the fibers formation during spinning, optimizing the scaffold fabrication as well as to promote the making of novel polymer scaffolds, then, design solution to polymeric nanofiber scaffolds for vascular application, evaluate its degradation mechanism and cytotoxicity during degradation process. The work on spinning device optimisation has demonstrated that the concentration had a dominant effect. Thus, viscosity measurements enable to find suitable parameters for polymer spinning. Then, a semi-cristalline poly(L-lactide) (PLLA) and a poly(lactide-co-ε-caprolactone) (PLCL) terpolymer specifically made for vascular application have been synthesized and air-spun. These samples were degraded in aqueous solution and characterized by physical and chemical methods to better understand their degradation mechanisms and seeded with endothelial cells to evaluate their cytotoxicity. The comparison between the two polymers scaffolds have shown surprising degradation behaviors depending on thermal properties of polymers. Moreover, these nanofiber degradation mechanisms have a direct influence on endothelial cells sensitivity with degradation by-products. To conclude, these works of doctorate display a promising solution to improve vascular prostheses and which could be applied to solve several issues in regenerative medicine field.
|
5 |
Designing biomaterials for controlled cardiac stem cell differentiation and enhanced cell therapy in the treatment of congestive heart failure / Conception de biomatériaux pour le contrôle de la différenciation cardiaque à partir de cellules souches et pour l’amélioration de la thérapie cellulaire dans le traitement de l’insuffisance cardiaque sévèreFarouz, Yohan 30 September 2015 (has links)
La thérapie cellulaire se positionne comme une stratégie prometteuse pour inciter le cœur infarci à se régénérer. A cet effet, des études récentes placent des espoirs considérables dans l’utilisation des cellules souches embryonnaires et notre laboratoire a déjà démontré comment les différencier en progéniteurs cardiovasculaires, un type de précurseurs cellulaires qui ne peut aboutir qu’à la formation de cardiomyocytes, de cellules endothéliales ou de cellules de muscles lisses. Cet engagement précoce réduit leur capacité de prolifération anarchique et en même temps leur permet de rester suffisamment plastiques pour éventuellement s’intégrer plus facilement avec le tissue hôte. Cependant, les études précliniques et cliniques d’injection de ces cellules s’avérèrent décevantes. Malgré de légères améliorations de la fonction cardiaque, on observa une trop faible survie cellulaire ainsi qu’un taux de rétention des cellules dans le myocarde remarquablement bas. Afin d’étudier ce problème, mes travaux de thèse ont porté non seulement sur la conception de nouveaux biomatériaux pouvant servir de moyen de transport et d’intégration des cellules dans la zone infarcie, mais aussi sur la conception de biomatériaux permettant de contrôler précisément l’environnement cellulaire au cours du processus de différenciation de cellules souches pluripotentes humaines en cardiomyocytes. Grâce aux importantes interactions entre nos laboratoires de recherche fondamentale et de recherche clinique, nous avons tout d’abord développé de nouvelles techniques de fabrication et de caractérisation de patches de fibrine cellularisés qui sont récemment entrés dans un essai clinique de phase I. A partir de cette formulation clinique approuvée par les autorités de régulation, nous avons élaboré toute une gamme de matériaux composites uniquement à base de matières premières pertinentes dans ce cadre clinique, dans le but d’améliorer la maturation des progéniteurs cardiovasculaires une fois greffés sur le cœur défaillant. Dans cette optique, nous avons également développé un modèle in vitro permettant d’étudier précisément l’influence combinée de la rigidité du substrat et du confinement spatial sur la différenciation des cellules souches en cardiomyocytes. Grâce à des techniques de microfabrication sur substrat mou, il a été possible de positionner précisément les cellules souches pluripotentes dans des espaces restreints d’élasticité variable. Ainsi, nous avons pu observer que même en utilisant des protocoles chimiques éprouvés basés sur la modulation de cascades de signalisation impliquées dans le développement cardiaque, une très forte hétérogénéité pouvait apparaître en fonction de l’environnement physique des cellules. Nous avons ainsi pu extraire les caractéristiques principales permettant une différenciation cardiaque efficace, reproductible et standardisée et les avons appliquées à la fabrication d’une nouvelle génération de patches composés de matériaux cliniques et de couches multiples de bandes synchrones de cardiomyocytes. De fait, ces travaux ouvrent de nouvelles voies dans l’utilisation de biomatériaux pour la production industrielle de cardiomyocytes et pour la fabrication de patches cliniques, cellularisés ou non, dans le traitement de l’insuffisance cardiaque. / Cell therapy is a promising strategy to help regenerate the damaged heart. Recent studies have placed a lot of hopes in embryonic stem cells and our lab had previously found a way to differentiate them into cardiac progenitors, cells that can only differentiate into cardiomyocyte, endothelial cells or smooth muscle cells. This early commitment decreases their proliferative capabilities, yet maintains their plasticity for better integration inside the host tissue. However, clinical and pre-clinical injection studies did not really meet the expectations. Even though slight improvements in cardiac function were demonstrated, very low cell viability has been observed, as well as a very low retention of the cells inside the myocardium. To address this problem, my PhD projects not only focus on the design of new biomaterials to act as a vehicle for cell delivery and retention in the infarcted area, but also on the design of biomaterials that control the cellular environment during the differentiation of pluripotent stem cells into cardiomyocytes. Going back and forth between the labs and the clinics, we first developed new techniques for the fabrication and the characterization of a cell-laden fibrin patch that is now undergoing phase I clinical trial. From the approved clinical formulation, we then propose new blends of clinical materials that will eventually improve the maturation of the cardiac progenitors once grafted onto the failing heart. In this perspective, we developed an in vitro model to investigate the combined influence of matrix elasticity and topographical confinement on stem cell differentiation into cardiomyocytes. By using microfabrication techniques to pattern pluripotent stem cells on substrates of controlled stiffness, we demonstrate that even using a widely recognized chemical-based protocol to modulate signaling cascades during differentiation, much heterogeneity emerges depending on the cellular physical environment. We thus extracted the main features that led to controlled and reproducible cardiac differentiation and applied it to the fabrication of next generation of multi-layered anisotropic cardiac patches in compliances with clinical requirements. This work opens new routes to high-scale production of cardiomyocytes and the fabrication of cell-laden or cell-free clinical patches.
|
Page generated in 0.058 seconds