• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 51
  • 24
  • 6
  • 1
  • 1
  • 1
  • Tagged with
  • 86
  • 86
  • 40
  • 40
  • 38
  • 31
  • 28
  • 27
  • 22
  • 19
  • 17
  • 15
  • 15
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude de films minces de matériaux à forte potentialité de déformation destinés à la réalisation d'actionneurs pour le contrôle santé de structures / Study of thin films of high strain potentiality materials bound to the realization of multilayer actuators for the health control of aeronautic structures

Herdier, Romain 27 March 2008 (has links)
Cette thèse traite de l'étude de matériaux intelligents pour la réalisation d'actionneurs multicouches pour le contrôle santé de structure dans l'aéronautique. Le travail a porté particulièrement sur l'optimisation des propriétés électriques et notamment piézoélectriques de films micrométriques de PZT et de PMNT. Ainsi, différents coefficients piézoélectriques de ces matériaux ont pu être étudiés grâce à la mise en place d'un banc de mesure par interférométrie laser. Il est apparu qu'en utilisant des électrodes de LNO, il était possible d'accroître leurs coefficients d33eff, d31eff, e31eff mais également leur permittivité. Des films minces de PMNT ont ensuite été épitaxiés sur des substrats de STO, ce qui a eu pour conséquence une nouvelle augmentation des propriétés du matériau. Enfin, l'étude des potentialités et de la croissance d'alliage magnétique à mémoire de forme, a été entreprise. Il est apparu que la mise au point de ce nouveau type de matériau pourrait être une voie intéressante pour la réalisation d'actionneurs couches minces à haute densité d'énergie. / This thesis de al with the study of smart materials bound to the realisation of multilayer actuator for the health control of aeronautic structures. The work has focussed on optimizing the electrical properties, and particularly piezoelectric properties , of micrometer films of PZT and PMNT. Thus, different piezoelectric coefficients of these materials have been studied through the establishment of a bench of measurement by laser interferometry. It was found that by using LNO electrodes, it was possible to increase their coefficients d33ef[, d31ef[, e31eff but also their permittivity. Thin films of PMNT were then growth on STO substrates. We obtain epitaxial films which has resulted in a further increase of the material properties. Finally, the study of the potentialities and the growth ofmagnetic shape memory alloy, has been undertaken. It appeared that the development of this new type of material could be an interesting path for the realization of thin films actuators with high energy density.
2

Polymères et hydrogels à mémoire de forme ultrason-répondants

Li, Guo January 2016 (has links)
Résumé : Les polymères à mémoire de forme (PMFs) possèdent la capacité de changer leurs formes en réponse aux changements de conditions environnementales. Généralement, ces matériaux dans une forme permanente peuvent être manipulés et fixés dans une forme temporaire. Cette déformation temporaire reste stable jusqu'à ce qu’un stimulus soit appliqué pour déclencher la reprise de la forme permanente, induit par la libération de l'énergie élastique stockée dans la forme temporaire. Cette capacité de se souvenir des formes différentes dans des conditions différentes a suscité beaucoup d'intérêt de la part des scientifiques et des ingénieurs en raison de l'énorme potentiel des PMFs pour de nombreuses applications telles que les implants médicaux, appareils intelligents et actionneurs. Au cours des dernières années, la recherche et le développement sur les PMFs croissent rapidement. Toutefois, les méthodes de déclenchement pour la reprise de forme sont toujours limitées à l'utilisation d'une poignée de stimuli, y compris le chauffage direct, l'exposition à la lumière, au champ électrique, au champ magnétique, et à un changement de pH ou de l'humidité. Il y a encore un besoin de développer de nouvelles méthodes pour contrôler les PMFs. D'autre part, pour plus d'applications, il est intéressant d’avoir des PMFs combinés avec d'autres propriétés ou fonctionnalités stimuli-sensibles, telles que la conductivité, la perméabilité, la libération de médicaments ou l'auto-guérison. Le thème principal de cette thèse est de développer des PMFs avec un nouveau mécanisme de stimulation, à savoir, l'exposition aux ultrasons, et avec des fonctionnalités supplémentaires. Nous avons utilisé des ultrasons pour déclencher la reprise de forme des polymères, y compris l'usage des ultrasons focalisés de haute intensité (UFHI) pour un PMF amorphe et l'utilisation des ultrasons thérapeutiques pour un hydrogel biocompatible à mémoire de forme. L’utilisation des ultrasons pour contrôler la récupération de forme présente plusieurs avantages par rapport à d'autres stimuli, tels que l'activation à distance, le contrôle spatiotemporelle et, plus important encore, une pénétration profonde dans les tissus biologiques. Pour les PMFs multifonctionnels, nous avons développé des PMFs combinés avec la libération de médicaments ou la propriété d'auto-guérison. Les travaux de recherche accomplis dans cette thèse portent principalement sur deux sujets présentés dans quatre chapitres. La première partie est l'étude sur l’utilisation de l’UFHI pour contrôler la reprise de forme et, simultanément, la libération de médicaments à partir de PMFs solides. La deuxième partie est consacrée au développement de nouveaux hydrogels polymères possédant à la fois la capacité de mémoire de forme et la propriété d'auto-guérison, dont la mémoire de forme peut être déclenchée par un appareil à ultrasons thérapeutique. Dans notre première étude sur les PMFs contrôlés par l’UFHI, nous avons préparé un copolymère statistique composé de méthacrylate de méthyle et d’acrylate de butyle, P(MMA-BA), comme un PMF modèle. Sous l'exposition UFHI, le polymère peut être chauffé à plus de 100 °C en quelques secondes, permettant le controle de la mémoire de forme par les ultrasons. En faisant usage de ce chauffage rapide et localisé induit par l’UFHI, nous avons réalisé le contrôle spatiotemporel sur le processus de récupération de forme, démontrant que les différentes parties déformées peuvent être activées séparément pour entreprendre la récupération de forme, et que le processus de récupération de forme peut être interrompu à tout moment pour obtenir plusieurs formes intermédiaires stables. En outre, nous avons démontré que la libération contrôlée de médicaments peut être réalisée dans le processus de récupération de forme simultanément. En effet, le chauffage sous UFHI augmente la mobilité de chaînes ainsi que le coefficient de diffusion de la matrice polymère, ce qui entraîne la libération du composé chargé dans le PMF. Les caractéristiques intéressantes de l'utilisation de l’UFHI dans le contrôle de la mémoire de forme sont prometteuses pour une large gamme d'applications, notamment dans les domaines biomédicaux. Sur la base du premier projet, afin de mieux comprendre la mémoire de forme contrôlée par l’UFHI ainsi que la relation entre les propriétés des polymères et leurs comportements en réponse a l’UFHI, nous avons utilisé le P(MMA-BA) en tant que polymère modèle et préparé des échantillons en rajustant plusieurs paramètres ou propriétés, y compris l'épaisseur, la composition des deux monomères et la teneur en agent de réticulation. Les résultats indiquent que pour une puissance de sortie ultrasonore donnée, il existe une épaisseur optimale de l'échantillon pour l'effet thermique induit par l’UFHI et par conséquent le taux de récupération de forme. En outre, les résultats révèlent des effets significatifs de la composition de copolymère et de la densité de réticulation sur le comportement en mémoire de forme. Le plus important est qu'il y a une relation directe entre le paramètre viscoélastique de tangente de perte, tan δ, du polymère et l'élévation de la température induite par l’UFHI. Nous avons constaté qu’une valeur plus élevée de tan δ du polymère donne lieu à une élévation de température supérieure qui, à son tour, détermine le comportement de récupération de la forme sous UFHI. La conclusion de cette étude fournit une compréhension importante pour la conception et la préparation des PMFs UFHI-sensibles. Sur un autre front, nous avons développé deux méthodes simples et générales pour préparer l’hydrogel à base du poly(alcool de vinyle) (PVA) possédant à la fois la mémoire de forme et la propriété d'auto-guérison. Il est difficile de préparer un hydrogel à mémoire de forme en raison de la grande quantité d'eau présente dans le matériau. Lorsque le PVA est soumis à un traitement de congélation/décongélation, il peut former un hydrogel physique avec des micro-domaines cristallins jouant le rôle de points de réticulation. Une étude précédente de notre groupe a également trouvé que l’hydrogel physique du PVA a la capacité d'auto-guérison de manière autonome en raison de nombreux ponts-H entre les groupes hydroxyle dans le polymère. Basé sur ces connaissances, nous avons développé deux stratégies pour préparer des hydrogels à mémoire de forme. Dans le premier cas, nous avons mis en évidence qu’en ajoutant une petite quantité de mélamine comme agent de réticulation pour former de multiples liaisons-H avec le PVA, l'hydrogel résultant, étant mécaniquement renforcée, peut être déformé et la déformation peut ensuite être fixée par le traitement de congélation/décongélation. Cela signifie qu’une forme temporaire de l'hydrogel de PVA/mélamine peut être obtenue, et que la reprise de forme peut être déclenchée par chauffage au-dessus de la température de fusion des micro-domaines cristallins du PVA. Nous avons démontré, pour la première fois, que la récupération de forme d'un hydrogel polymère peut être déclenchée à l'aide d'un appareil à ultrasons thérapeutiques en vente dans les pharmacies pour le soulagement de la douleur. Cette réalisation est une étape importante vers des applications des PMFs contrôlés par les ultrasons. Dans la deuxième étude concernant les hydrogels à mémoire de forme, nous avons développé une nouvelle stratégie pour transmettre les propriétés recherchées de mémoire de forme et d'auto-guérison à des hydrogels réticulés chimiquement. Par voie d’interpénétration de deux réseaux, un réseau chimique du poly(éthylène glycol) (PEG) et un réseau physique du PVA, nous montrons que cet hydrogel de double-réseau est non seulement mécaniquement fort, mais aussi doté des propriétés de mémoire de forme et d’auto-guérison découlant du PVA. La forme temporaire, à nouveau, peut être obtenue en soumettant l'hydrogel déformé au traitement de congélation/décongélation. Par ailleurs, profitant de la structure à double-réseau, nous avons fait la première investigation sur l’effet de l’anisotropie sur le comportement d'auto-guérison dans un hydrogel allongé. Les résultats indiquent que l'efficacité d'auto-cicatrisation est différente selon la direction de mesure par rapport à la direction d’étirement de l’hydrogel (direction d'orientation de chaines), et que ce phénomène pourrait être issu de différentes densités des ponts-H le long de différentes directions dans un hydrogel anisotrope. / Abstract : Shape memory polymers (SMPs) have the ability to change their sizes or shapes in response to environmental condition changes. Usually these materials with an original (permanent) shape can be manipulated and fixed into a temporary and dormant shape. This temporary deformation is stable until a stimulus is applied to trigger the shape recovery of the material to go back to its original, stress-free condition, driven by the release of elastic energy stored during the temporary shape processing. The ability to remember different shapes at different conditions has arouse much interest from scientists and engineers because of the great potential of SMPs for applications in medical implants, smart devices, information recorders, actuators, and so on. In recent years there is a rapid development in this research field; versatile SMP systems with various formulations or functionalities have been produced. However, the shape recovery triggering methods are limited to the use of a handful of stimuli, including direct heating in most cases, and also exposure to light, electric field, magnetic field, pH change or moisture. There is still a need to develop novel triggering methods to control SMPs. On the other hand, for the development and utilization of SMPs in a broader application spectrum, producing polymer systems combining the shape memory property and other stimuli-responsive functionalities, such as conductivity, permeability, drug delivery or self-healing, is also of considerable interest. The main topic of this thesis is to develop SMPs with a new stimulation mechanism, namely, ultrasound, and with additional functionalities. We utilized ultrasound to trigger shape recovery of polymers, including the use of high intensity focused ultrasound (HIFU) to trigger an amorphous SMP and the use of therapeutic ultrasound to control a biocompatible shape memory hydrogel. Using ultrasound to control shape recovery has several advantages compared to other stimuli, such as remote activation, spatiotemporal control and, more importantly, deep penetration into biological tissues. For SMPs with additional functionalities, we developed SMP systems combined with drug delivery or self-healing properties. The research work s accomplished in this thesis mainly covers two topics, reported in four chapters. The first part is the investigation of HIFU in triggering the shape recovery and, simultaneously, controlling the drug delivery from polymers in the solid state. The second part is focused on the development of new polymer hydrogels possessing both the shape memory and self-healing functionalities and whose shape memory can be controlled using a therapeutic ultrasound device. In our first study regarding ultrasound-controlled SMPs, we prepared an amorphous random copolymer poly(methyl methacrylate-co- butyl acrylate) (P(MMA-BA)) as a model SMP because both its shape fixity ratio and shape recovery ratio are nearly ~ 100%. Under HIFU exposure the polymers can be heated to above 100 ° C within several seconds while the environmental temperature increases only moderately. This rapid and prominent ultrasound thermal effect makes it possible to control SMPs. By making use of HIFU-induced localized heating, we have realized spatiotemporal control over the shape recovery process, showing that different parts of deformed SMP can be triggered to undergo shape recovery separately, and that the shape recovery process can be halted at will to obtain several intermediate shapes. In addition, we have demonstrated that controlled drug release can be achieved in the shape recovery process simultaneously. Upon increase of the temperature chain mobility as well as the diffusion coefficient of the polymer matrix are both enhanced, resulting in release of loaded compound. The appealing features of using HIFU to trigger polymer shape recovery hold promise for a wide range of applications, especially in biomedical fields. On the basis of the first project, in order to further understand HIFU-controlled shape memory and the relationship between polymer properties and their behaviors under HIFU, we used P(MMA-BA) as a model polymer and adjusted several properties, including thickness, monomer composition and crosslinker content, to investigate the temperature rise and shape recovery behavior of the polymer under HIFU. The results indicate that for a given ultrasound output power, there is an optimal sample thickness for the ultrasound-induced thermal effect and thus the shape recovery ratio. Moreover, the results reveal significant effects of the copolymer composition and the crosslinking density on the shape recovery behavior, showing that there is a close relationship between the viscoelastic parameter loss tangent, tan δ, of the polymer and the HIFU-induced temperature rise. We found that a higher tan δ value of the polymer at the operating temperature gives rise to a greater temperature rise rate that, in turn, determines the shape recovery behavior under HIFU. The finding of this study provides useful guiding rules for the design and preparation of HIFU-responsive SMPs. On another front, we developed two simple and general methods to prepare poly(vinyl alcohol) (PVA) - based s hape memory hydrogels possessing both the shape memory and self-healing properties. It is challenging to prepare shape memory hydrogels because of the large amount of water present in the material. When PVA is subjected to freezing/thawing treatment, it can form a physical hydrogel with cryst allized micro-domains acting as crosslinks; a previous study of our group also found that such PVA hydrogel has the ability to autonomously self-heal due to the extensive H-bonding between hydroxyl groups on PVA chains. On the basis of the above knowledge, we developed two strategies to prepare shape memory PVA hydrogels. In the first case, we show that by adding a small amount of melamine as a small-molecule crosslinker to form multiple H-bonds with PVA, the mechanicall y enhanced hydrogel can be deformed, and the deformation can be subsequently fixed when the deformed hydrogel is treated with freezing/thawing due to the formed network structure. This means that temporary shape of the PVA/melamine hydrogel can be obtained, and that the shape recovery can be triggered by heating the hydrogel above the melting temperature of PVA crystalline micro-domains formed during the freezing/thawing treatment. We went to demonstrate, for the first time, that the shape recovery of a polymer hydrogel can be triggered using a therapeutic x ultrasound device on sale in drugstores for pain relief. This achievement is a significant step forward towards applications of ultrasound-controlled SMPs. In the second study concerning shape memory hydro gels, we further developed a new strategy to impart the shape memory and self-healing functionalities to chemically crosslinked polymer hydrogels. By interpenetrating a poly(ethylene glycol) (PEG) chemical network in the PVA physical network, we show that the shape memory property is enabled in this strong and tough double-network hydrogel, together with partial self-healing capability arising from PVA. The temporary shape again can be obtained using the freezing/thawing treatment on deformed hydrogel; high er shape fixation can be achieved using repeated freezing/thawing cycles as stable crystalline micro-domains of PVA with higher crystallinity are formed in the hydrogel. Moreover, taking advantage of the double-network structure, we made the first investigation on the anisotropic self-healing behavior in a n elongated hydrogel. The results indicate that the self-healing efficiency is different between the directions along or perpendicular to polymer chain orientation direction, and that this phenomenon could be originated from a difference in H-bonding density in the anisotropic hydrogel. / 摘要 : 形状记忆聚合物是刺激响应聚合物中的一类,他们具有响应外界环境刺激而改变自身形状的能力。通常情况下,这些材料的初始形状可以在特定环境下被改变并固定为其他临时形状,这些固定下来的临时形状在通常情况下是稳定的,只有当对其被施加一外界刺激之后,材料响应这一刺激并激活其链段运动能力,在之前编程过程中储存的弹性能的作用下材料最终回复到其最初的形状。这一具有“在不同环境下具有不同形状”能力的材料引起了科研人员们的巨大兴趣,因为这些材料在如智能器件,信息记录,传感器等许多领域都有着巨大的应用前景。近年来形状记忆聚合物领域有着巨大的发展,许多具有不同构成及功能的形状记忆材料被报道。然而,形状记忆材料的回复手段迄今为止只局限于少数几种刺激源,如光,电,磁场,pH,溶剂等。刺激手段的局限性正逐渐成为制约形状记忆在更广阔领域发挥作用的一个问题。另一方面,制备同时具有其他功能的形状记忆聚合物,如同时具有导电性,渗透性,药物释放或自修复等功能的形状记忆聚合物,也是形状记忆研究领域的一个热门方向。本论文的研究主旨是制备同时具有其他功能的新型刺激响应形状记忆聚合物,即超声响应的形状记忆聚合物。我们实现了聚焦超声装置作为刺激源,实现了无定型形状记忆聚合物定时,定位可控的形状记忆回复过程,以及利用理疗超声实现了形状记忆水凝胶的形状回复。与其他刺激手段相比,超声波具有几个方面的优势,例如,可以远程控制形状记忆回复过程,可以实现不同部位分别回复的定位可控形状记忆,形状记忆过程中的可控性,以及在生物组织中高穿透性等,因而这一手段在生物医用领域具有巨大前景。同时,我们同时将其他功能引入到了形状记忆聚合物体系中,包括药物的控制释放,与自修复性能等。本论文中所涉及的研究工作包括两个主题,分别在4章中进行论述。第一个主题是聚焦超声响应的固体形状记忆聚合物的形状记忆与药物释放行为。第二个主题是制备具有超声响应性的同时具有形状记忆与自修复功能的水凝胶。 在第一个关于超声响应形状记忆聚合物的研究工作中,我们制备了聚(甲基丙烯酸甲酯-co-丙烯酸丁酯)无归共聚物作为模型形状记忆聚合物,因为它的形状固定率 与形状回复率均接近100%。在聚焦超声的作用下,所用形状记忆聚合物可以在几十秒内被加热至100 °C以上,同时将材料周围的环境温度保持在一相对稳定的范围内。这一快速且显著的超声热效应使其用于刺激形状记忆聚合物成为可能。通过利用聚焦超声的局部加热效应,我们实现了定时定位可控的形状记忆过程:不同部位的形变可以分别利用超声刺激进行回复;单一形状回复过程也可被任意控制,获得回复过程中的多种临时形状。此外,我们还证明了药物控制释放可以与形状回复过程在在超声刺激下同时实现。聚焦超声的这些特点使其在许多相关领域,尤其是生物医学领域,有着巨大的应用前景。 在第一个项目的基础上我们进一步研究了聚合物在聚焦超声作用下的形状记忆行为,以及聚合物自身性质与其在聚焦超声作用下的升温效应及形状记忆行为的关系。我们使用聚(甲基丙烯酸甲酯-co-丙烯酸丁酯)作为模板聚合物,通过改变聚合物的厚度,聚合单体比例以及交联剂含量等,来研究这些性质对聚合物在聚焦超声下行为的影响。结果表明,在特定功率的超声作用下,聚合物存在着一最佳厚度值来达到最强的热效应以及最佳的形状回复率。此外,聚合物的单体组成以及交联剂含量对其在超声下的行为有显著的影响,且聚合物的粘弹性系数损耗因子(tan δ)与其超声响应行为有着密切联系,损耗因子(tan δ)值的大小决定了聚合物在某一特定温度值时的升温速率以及形状回复速率。这些结果将为设计与制备超声响应形状记忆聚合物提供重要参考。 另一方面,我们使用两种不同的方法制备了同时具有形状记忆与自修复功能的聚乙烯醇形状记忆水凝胶。与固体形状记忆聚合物相比,制备形状记忆水凝胶的难点在于大量水分子存在于水凝胶体系内。聚乙烯醇的水凝胶可以通过冷冻解冻循环工艺使水凝胶内形成微小的结晶相来制备。在我们之前的工作中,我们发现冷冻解冻循环方法制备的聚乙烯醇水凝胶具有优良的自修复性能,在材料形成断裂面之后水凝胶中聚乙烯醇分子链上的羟基可以通过再次形成氢键作用来修复断面。本论文中我们开发了两种不同的方法来制备聚乙烯醇形状记忆水凝胶。在第一种方法中,我们引入了一种小分子交联剂,它可以通过与聚乙烯醇分子链形成多重氢键来形成水凝 胶,同时当这种水凝胶变形后,形变可以通过冷冻解冻循环来固定。通过加热水凝胶使其温度升高至微晶区域融融温度以上,可诱导水凝胶回复至其初始形状。此外,我们还证明了形变后的聚乙烯醇形状记忆水凝胶的形状回复过程可以通过一种在药店中购买的,用于治疗肌肉疼痛的理疗超声器械来刺激实现。这一成果是超声刺激形状记忆聚合物在应用方向的巨大进步。 在另一工作中,我们研究出了一种制备具有形状记忆与自修复性能的化学交联水凝胶的新方法。通过在聚乙烯醇水凝胶中引入一化学交联网络,可形成具有互穿网络结构的水凝胶,并利用这一双网络结构,我们实现了形状记忆行为以及基于聚乙烯醇的自修复性能。形变通过冷冻解冻循环来固定,重复这一循环可形成更加稳定的微晶区域从而获得较高的形状固定率。此外,通过利用水凝胶的双网络结构,我们首次研究了拉伸形变后的水凝胶各向异性的自修复行为,我们发现在沿拉伸方向与垂直方向上具有不同的自修复效率,造成这一结果原因可能与水凝胶基体在这两个方向上氢键密度的不同有关。
3

Modélisation du comportement thermomécanique d'un alliage à mémoire de forme à base de fer type Fe-Mn-Si / Modelling of Martensitic transformation and plastic slip effects on the thermomechanical behaviour of Iron based Shape Memory Alloys

Jemal Ellouze, Fatma 13 November 2009 (has links)
Il est bien connu que les alliages à mémoire de forme (AMF) sont considérés comme une classe particulière de matériaux qui peuvent retrouver une forme préalablement définie par simple chauffage. Cette propriété remarquable, appelée effet mémoire de forme, peut être exploitée dans la conception d'applications originales afin de trouver les solutions intéressantes aux problèmes rencontrés dans divers champs industriels. Dans notre travail, nous proposons une loi constitutive tridimensionnelle thermomécanique adaptée aux alliages à mémoire de forme à base de fer. Elle tient compte de l'effet de la transformation martensitique et des mécanismes de glissement plastique et leurs interactions. La formulation adoptée est basée sur une description micromécanique simplifiée. La comparaison entre les forces motrices et les forces critiques d'activation des mécanismes mis en jeu nous ont permis de déterminer le type de comportement induit pour un niveau de chargement donné. Nous avons adopté le schéma implicite d'intégration de Newton-Raphson pour la résolution de ce système. Les résultats obtenus pour des chargements thermomécaniques sont comparés à ceux obtenus expérimentalement. / It is well known that Shape Memory Alloys (SMA) are a particular class of materials that can recover a memorized shape by simple heating. This remarkable property, called the Shape Memory Effect (SME), can be exploited in the design of original applications in order to find attractive solutions to problems encountered in various industrial fields. We propose a thermo-mechanical three-dimensional constitutive law adapted to Fe-based shape memory alloys. It takes into account the effect of the martensitic transformation and the plastic slip mechanisms and their interaction. The adopted formulation is based on a simplified micromechanical description. The macroscopic behaviour is derived by considering the equivalent homogeneous effect on a representative volume element. The Gibbs free energy expression is defined. Thermodynamic driving forces are then derived and compared to critical forces leading to the constitutive equations solved by Newton–Raphson numerical scheme. Obtained results for thermo-mechanical loadings are compared to experimental ones.
4

Modélisation thermomécanique unifiée des comportements des matériaux à mémoire de forme. Application aux chargements cycliques et à la fatigue.

Zaki, Wael 05 October 2006 (has links) (PDF)
Au cours de ce mémoire, nous avons présenté un modèle complet et unifié de comportement des matériaux à mémoire de forme et un critère énergétique applicable au calcul à la fatigue de structures fonctionnant dans le domaine pseudo élastique. Le modèle et le critère sont validés en comparant leurs prédictions à des résultats expérimentaux. Notre modélisation présente les avantages suivants : – elle est complète, c'est-à-dire qu'elle permet de simuler tous les principaux phénomènes caractéristiques du comportement des MMF. La simulation s'appuie sur une même loi de comportement et sur un même ensemble de lois complémentaires, ce qui lui confère un caractère unifié ; – les paramètres sont simples à identifier ; – l'accord des prédictions avec les résultats expérimentaux disponibles est satisfaisant ; – étant donné la prise en compte des chargements non proportionnels, il est possible d'effectuer des calculs de structures en MMF soumises à des chargements complexes ; – les chargements cycliques sont pris en compte. Il est donc possible de déterminer l'état stabilisé d'une structure soumise à des cycles de changement de phase répétés dans le domaine pseudoélastique. En particulier, le modèle permet de calculer l'énergie dissipée par cycle stabilisé en tout point de la structure ; le critère énergétique peut ensuite être utilisé pour estimer sa durée de vie. Notre travail ouvre la voie vers une modélisation plus détaillée du comportement des MMF, permettant la prise en compte de certains effets souvent négligés, comme la formation de la phase R, l'apparition de boucles internes liées à des charges décharges partielles dans le domaine pseudoélastique et la dissymétrie du comportement en traction et en compression. Nous pensons, par ailleurs, qu'il est possible de décrire la dynamique des MMF moyennant une extension du présent modèle. Sur le plan expérimental, il serait intéressant d'appliquer des technologies nouvelles à l'étude des matériaux à mémoire de forme. Dans ce cadre, la thermographie infrarouge nous semble utile pour caractériser la localisation du changement de phase au niveau de certaines structures ; d'autres techniques, comme l'interaction laser matière, promettent une meilleure description de la cinétique de la transformation martensitique. En outre, le problème de la fatigue des MMF devra faire l'objet de recherches plus poussées. Dans l'immédiat, il est nécessaire de tester la validité de notre critère de durée de vie pour différents types de chargement, notamment pour la torsion, afin de vérifier son caractère intrinsèque.
5

Mise en œuvre et modélisation du comportement cyclique des polymères à mémoire de forme / Elaboration and modeling of the cyclic behavior of shape memory polymers

Bouaziz, Rami 16 October 2017 (has links)
Le polyuréthane thermoplastique à mémoire de forme est un matériau "intelligent", réactif, capable de répondre à un stimulus thermique en déployant de grandes déformations et de retrouver ensuite sa forme initiale lors d’un cycle thermomécanique. Cette réversibilité totale est possible sur plusieurs cycles. Afin de Dimensionner un composant à mémoire de forme dans un système mécanique, un modèle de simulation numérique thermo-viscoélastique en grandes déformations de l’effet mémoire de forme est proposé. L’identification des paramètres de ce modèle est réalisée sur la base d’essais thermomécaniques (analyse mécanique dynamique DMA, traction-relaxation en température, recouvrements libres et contraints). La loi de comportement ainsi formulée, qui découple la contrainte hyperélastique et la contrainte viscoélastique, est programmée dans le logiciel de simulation numérique Comsol Multiphysics. Les résultats de la simulation montrent une très bonne concordance avec la réponse expérimentale du matériau au cours de plusieurs cycles de mémoire de forme. Afin d'améliorer les performances mécaniques statiques et dynamiques du polymère à mémoire de forme du polyuréthane thermoplastique (TPU), nous proposons d’ajouter des faibles pourcentages de nanotubes de halloysite (HNT) en utilisant un processus d’extrusion à l'état fondu avec du polyuréthane thermoplastique. Ce processus a induit une répartition homogène et une bonne dispersion de nanotubes dans toute la matrice TPU. Les essais mécaniques en tension ont démontré que la force et le module des nanocomposites augmentaient de manière significative avec l'ajout de halloysites sans perte de ductilité. En outre, les tests de mémoire cyclique en grande souplesse ont montré que les propriétés de la mémoire de forme, principalement la vitesse de récupération, étaient également améliorées. Nous avons, finalement, étudié l'effet de l’ajout des nanotubes sur les paramètres mécaniques du modèle proposé. / The semi-crystalline thermoplastic shape memory polyurethane (TPU-SMPU) is a smart material which has the ability to return to its original shape after applying a large strain thermo-mechanical cycle when it is stimulated by heating. This smart material has the advantage of recovering even after more than 100% of strain during several thermo-mechanical cycles. To explore the performance of a smart component in a mechanical system, it is mandatory to master the prediction of its behavior through a numerical model. A constitutive model is, then, proposed to describe its thermo-mechanical behavior and to predict the shape memory response. Uniaxial tensile tests at small strain rates were performed at 60°C in order to analyze the hyper-elastic response for each cycle. Relaxation tests were carried out at the end of the previous tensile loading to highlight the viscoelastic response during the shape memory cycle. These experimental data were, then, used in a curve-fitting algorithm employing least-squares optimization approach in order to identify the parameters of the proposed model. At last, the shape memory effect was investigated by means of free and constrained recovery experiments. The proposed model was then implemented into Comsol Multiphysics. It predicts quite well the experimental results in all cycles. In order to assess its predictability, this model has, then, been applied to the design of 3D structures. Furthermore, the mechanical performance and the shape memory properties have been improved by the addition of halloysite nanotubes (HNTs) with different weight percentages of nanotubes contents using a melt extrusion process. This process induced a homogeneous distribution and a good dispersion of nanotubes throughout the TPU matrix. Mechanical tests in tension demonstrated that strength and modulus of the nanocomposites significantly increase with addition of halloysites without significant loss of ductility. Moreover, cyclic shape memory tests under large strain showed that shape memory properties, mainly the recovery speed, were also enhanced. Using a thermo-visco-hyperelastic model for shape memory polymers, we have investigated the effect of nanotubes addition on the mechanical parameters.
6

Analyse numérique et expérimentale du comportement d'un alliage à mémoire de forme avec précipités (Ni47 Ti44 Nb9) : Application à la connectique / Behavior of a shape memory alloy with precipitates (Ni47Ti44Nb9) : numerical and experimental analysis, and tightening application

Piotrowski, Boris 02 March 2010 (has links)
Les précipités ductiles de niobium compris dans l'alliage à mémoire de forme Ni47Ti44Nb9 élargissent l'hystérésis de transformation après un traitement particulier. L'augmentation des températures de transformation inverse peut atteindre 80 °C. Cette caractéristique représente un grand intérêt pour des applications industrielles, notamment pour des bagues de serrage. Un modèle de comportement thermomécanique est présenté. Il s'appuie sur des observations expérimentales permettant de caractériser l'alliage, considéré comme un composite dont la matrice est composée de NiTi avec un comportement à mémoire de forme, et d'inclusions de niobium avec un comportement élastoplastique ductile. La technique de transition d'échelle de Mori-Tanaka entraîne la formulation d'une loi de comportement macrohomogène. Ce modèle est implémenté dans un code de calcul par éléments finis. Des dispositifs de serrage sont réalisés expérimentalement et modélisés numériquement afin de valider le modèle. / Niobium ductile precipitates included in Ni47Ti44Nb9 shape memory alloy broaden transformation hysteresis after a particular treatment. The increase of reverse transformation temperature can reach 80 °C. This feature is attractive for industrial applications, including tightening rings. A thermomechanical model is presented. It is based on experimental observations to characterize the alloy, considered as a composite whose matrix is composed of NiTi with shape memory alloy behavior and inclusions of niobium with elastic-plastic behavior. The Mori-Tanaka transition scale technique results in a macro-homogeneous behavior law formulation. This model is implemented in a finite element code. Clamping devices are realized experimentally and modelled numerically to validate the model.
7

Modélisation du comportement macroscopique des alliages à mémoire de forme : application aux matériaux composites / Modeling of the macroscopic behavior of shape memory alloys : application to composite

Chemisky, Yves 08 July 2009 (has links)
Ce travail de thèse a pour objectif de déterminer le comportement de structures composites contenant une phase en alliage à mémoire de forme (AMF). Un modèle macroscopique, basé sur la thermodynamique des processus irréversibles, est développé afin de déterminer le comportement de l'alliage a mémoire de forme. Ce modèle prend en compte certains des comportements clés des alliages à mémoire de forme en Nickel-titane, comme la dissymétrie traction-compression, les chargements partiels et le comportement de la martensite autoaccommodée. Une comparaison avec une base de donnée expérimentale montre une bonne capacité de prédiction du modèle, et ouvre une discussion sur des phénomènes supplémentaires à prendre en compte. A l'aide d'outils de simulation numérique, et notamment la méthode des éléments finis, ce modèle est appliqué à la détermination du comportement de matériaux composites. Deux problématiques sont considérées, la première étant l'étude du comportement d'une structure composite formée d'une matrice en élastomère et renforcée par des fibres ondulées en alliage à mémoire de forme. La deuxième problématique concerne l'étude de l'impact des phénomènes de précipitation (Ni4Ti3) dans les alliages de Nickel-Titane, sur le comportement macroscopique du matériau. Pour ce dernier cas, une cellule élémentaire de référence est définie, et le comportement macroscopique du matériau est estimé en considérant une variation des propretés de la matrice en AMF en fonction de sa composition chimique. Dans les deux cas, la modélisation apporte des informations intéressantes sur les champs de déformation et de contrainte et sur le comportement global / The purpose of the dissertation work is to determine the thermomechanical behavior of shape memory alloys (SMAs) based composites structures. A macroscopic model, developed in the framework of thermodynamics of irreversible process, is developed in order to model the behavior of the SMA phase. This model deals with several key features of SMAs behavior, like tension-compression asymmetry, partial cycles and the behavior of the formed self-accommodated martensite. A comparison with several experimental database show a good prediction capability of the model, and opens a discussion on additional features to take into account using finite element analysis, the behavior of SMA-based composite material is computed. This methodology is applied for two cases ; the first one is the study of an elastomeric ribbon reinforced with snake-like shape SMA fibers. The second case considers the impact of precipitation (Ni4Ti3) on the macroscopic behavior in Ni-rich NiTi SMAs. A reference unit cell is defined, and the macroscopic behavior is estimated considering a variation of material properties throughout the cell as a function of the chemical composition. In both cases, the model provides interesting information on stress and stra fields, as well as on the global behavior
8

Modélisation du comportement thermomécanique d'alliages à mémoire de forme. Application au dimensionnement de microsystèmes et extension en non local / Modeling of shape memory alloys thermomechanical behavior. Application to microsystems design and extension to nonlocal framework

Duval, Arnaud 08 December 2009 (has links)
Un modèle de comportement thermomécanique pour les alliages à mémoire de forme est présenté. Il prend en compte la transformation de phase martensitique, l'orientation des variantes de martensite ainsi que l'accommodation inélastique des macles au sein de la martensite formée sous une structure auto-accommodée. Un potentiel thermodynamique pour un volume élémentaire représentatif est proposé. Il est décrit à l'aide de trois variables internes définies à l'échelle macroscopique. Des forces thermodynamiques sont dérivées de ce potentiel et équilibrées en faisant intervenir des phénomènes dissipatifs. Le modèle est ensuite implanté dans un code de calcul par élément finis afin de dimensionner des structures en deux et trois dimensions. Ce modèle a servi par la suite de base à une description non locale du comportement superélastique permettant de prendre en compte les phénomènes de localisation observés dans les fils et les films minces d'AMF. Des éléments finis spécifiques sont développés afin de pouvoir prendre en compte ce type d'approche dans le cadre d'un calcul de structures. / A constitutive thermomechanical model for the behavior of shape memory alloys is presented. It takes into account the martensitic phase transformation, the orientation of martensite variants and the inelastic accommodation of twins inside self-accommodated martensite. A thermodynamical potential is built using three internal variables described at macroscopic scale. Driving forces are derived from this potential and the equilibrium is reached by considering dissipative phenomena. The model is then implemented into a finite element code in order to design two or three-dimensional structures. It was adopted as a fundamental for a non-local description of the superelastic behavior in order to take into account the localization phenomenon observed in SMA wires and thin films. Specific finite elements are developed to account with this type of approach in the framework of structures computation.
9

Study on structural, electronic and magnetic properties of Ni-Mn-Ga and Ni-Mn-In ferromagnetic shape memory alloy systems / Etude des propriétés structurales, électroniques et magnétiques d'alliages à mémoire de forme ferromagnétiques dans les systèmes Ni-Mn-Ga et Ni-Mn-In

Bai, Jing 19 June 2011 (has links)
Les Alliages à Mémoire de Forme Ferromagnétiques (AMFF) sont de nouveaux matériaux intelligents qui présentent des déformations induites par l’application d’un champ magnétique pouvant aller jusqu’à 10%. Ainsi, ils ont un fort potentiel pour de nombreuses applications technologiques. En outre, les couplages forts entre le champ magnétique et la structure dans ces matériaux rendent le phénomène « mémoire » très intéressant d'un point de vue scientifique. Ce travail présente une investigation de ces matériaux via des calculs ab initio effectues en utilisant la théorie de la fonctionnelle de la densité (DFT) a l’aide du logiciel VASP. Dans les alliages stœchiométriques du type Ni2XY (X = Mn, Fe, Co, Y = Ga, In), les paramètres structuraux, les distances interatomiques, les moments magnétiques partiels et totaux augmentent graduellement avec le nombre d’électrons de valence de l’élément X alors que le module de compressibilité varie en sens inverse. Les énergies de formation des composes indiquent une tendance a la déstabilisation de l’alliage si les atomes de Mn sont substitues par des atomes de Fe ou de Co mais également si les atomes de Ga sont remplacés par des atomes d’In. La liaison forte entre les atomes de Ni dans Ni2MnGa est remplacée par des liaisons entre les atomes de Ni et de X dans les autres alliages. Pour les alliages non-stoechiométriques Ni2XY (X = Mn, Fe, Co, Y = Ga, In), des énergies de formation de plusieurs types de défauts (permutations atomiques, enrichissement et appauvrissement en un ou plusieurs éléments, lacunes) ont été calcules. Dans la plupart des cas, les atomes en excès occupent les sites de l’atome déficient, sauf dans le cas d’un compose pauvre en Ni et riche en Y. Dans ce dernier cas, la paire de défauts (YX + Xni) est énergétiquement plus favorable. La valeur du moment magnétique dépend de manière très sensible de la distance entre les atomes de Ni et X. Les effets de l'addition de Co sur les propriétés de l’alliage Ni8-xMn4Ga4Cox (x=0-2) ont été étudiés. Les atomes de Co occupent préférentiellement les sites Ni. Les énergies de formation calculées indiquent une instabilité structurale augmentant avec la teneur en Co pour les deux phases : austénite paramagnétique (AP) et ferromagnétique (AF). La différence d'énergie totale entre ces 2 phases AP et AF augmente également avec la teneur en Co, qui se traduit par une élévation de la température de Curie Tc quand le Ni est substitue par le Co. La complémentarité et le couplage des aspects fondamentaux tels que la cristallographie, la stabilité de phase, et la structure électronique dans les AMFF de type Ni-X-Y (X = Mn, Fe, Co, Y = Ga, In) ont une grande importance pour améliorer les performances fonctionnelles et permettront de concevoir de nouveaux AMFF prometteurs / Ferromagnetic shape memory alloys (FSMAs) are novel smart materials which exhibit magnetic field induced strains of up to 10 %. As such they have potential for many technological applications. Also, the strong magnetostructural couplings of the FMSM effect make the phenomenon very interesting from a scientific point of view. In the present work, a series of first–principles calculations have been performed within the framework of the Density Functional Theory (DFT) using the Vienna Ab initio Software Package (VASP). In the stoichiometric Ni2XY (X=Mn, Fe, Co; Y=Ga, In) alloys, lattice parameters, atomic separations, total and partial magnetic moments decrease gradually with the increase in the X atomic number; whereas the bulk modulus displays an opposite tendency. The formation energy indicates a destabilization tendency if Mn is substituted by Fe or Co, or Ga is replaced by In. The strong bond between neighboring Ni atoms in Ni2MnGa is replaced by the bond between Ni and X atoms in other alloys. For the off-stoichiometric Ni2XY (X=Mn, Fe, Co; Y=Ga, In), the formation energies of several kinds of defects (atomic exchange, antisite, vacancy) were calculated. For most cases of the site occupation, the excess atoms of the rich component directly occupy the site(s) of the deficient one(s), except for Y-rich Ni-deficient composition. In the latter case, the defect pair (YX + XNi) is energetically more favorable. The value of Ni magnetic moment sensitively depends on the distance between Ni and X atoms. The effects of Co addition on the properties of Ni8-xMn4Ga4Cox (x=0-2) FSMAs were systematically investigated. The added Co atoms preferentially occupy the Ni sites. The calculated formation energies indicate a structural instability with the increase in the Co content for both paramagnetic (PA) and ferromagnetic austenite (FA). The total energy difference between PA and FA increases, which results in the rise of Tc when Ni is replaced by Co. Insights into fundamental aspects such as crystallography, phase stability, and electronic structure in Ni-X-Y (X=Mn, Fe, Co; Y=Ga, In) FSMAs are of great significance to improve the functional performances and to design new promising FSMAs
10

Study on crystallographic features of Ni-Mn-Ga ferromagnetic shape memory alloys / Etudes de caractéristiques cristallographiques d'alliages à mémoire de forme ferromagnétiques Ni-Mn-Ga

Li, Zongbin 09 October 2011 (has links)
Dans ce travail, les caractéristiques cristallographiques des martensites d’alliages Ni-Mn-Ga ont été étudiées en détail. En utilisant l’information de la superstructure de martensite 5M de Ni50Mn28Ga22 et de martensite 7M de Ni50Mn30Ga20 pour des mesures en EBSD, les structures cristallines ont été confirmées. Le nombre de variantes, les relations d’orientation entre les variantes adjacentes et les plans d’interface des variantes ont été déterminées sans ambiguïté. Sur la base de données d’orientations précises des variantes de martensite, les relations d’orientation de transformation de l’austénite en martensite 5M et de l’austénite en martensite 7M ont été déterminées, sans présence de l’austénite résiduelle. Pour la martensite NM de Ni54Mn24Ga22, les lamelles de macles à l’échelle nanométrique dans les platelets martensitiques ont été révélées. Les interfaces entre les platelets et entre les lamelles ont été analysées. Dans un alliage Ni53Mn22Ga25 avec coexistence de l’austénite et de la martensite à température ambiante, la formation de la microstructure martensitique en forme de losange avec quatre variantes lors de la transformation de l’austénite en martensite 7M a été mise en évidence. La nature de la martensite 7M a été clairement précisée dans ce travail. Elle est thermodynamiquement métastable et intermédiaire entre l’austénite parent et la martensite NM finale. La martensite 7M possède une structure cristalline indépendante, plutôt que la combinaison de macles nanométrique de martensite non modulée. Le rôle de la martensite 7M dans la transformation est d’atténuer le décalage important entre la maille de l’austénite cubique et celle de la martensite tétragonale et d’éviter la formation d’interfaces incohérentes entre les platelets de martensite NM, qui constituent une barrière énergétique infranchissable / In this work, the crystallographic features of martensites in Ni-Mn-Ga alloys were detailed studied. By using superstructure information for EBSD mapping on 5M martensite in Ni50Mn28Ga22 alloy and 7M martensite in Ni50Mn30Ga20 alloy, the crystal structures were confirmed and the variant number, twin orientation relationships of adjacent variants and twin interface planes were unambiguously determined. Based on the accurate orientation data of martensite variants, the transformation ORs for austenite-5M and austenite-7M were indirectly determined with no presence of initial austenite. For the NM martensite of Ni54Mn24Ga22, the nano-scale twin lamellae in martensitic plates were revealed, and the inter-plate interfaces and inter-lamellar interfaces were analyzed. In a Ni53Mn22Ga25 alloy with co-existence of austenite and martensite at room temperature, the formation of characteristic diamond-like martensite microstructure with four variants during the austenite-7M martensite transformation was evidenced. The 7M martensite occurs on cooling as a thermodynamically metastable phase that is intermediate between the parent austenite and the final NM martensite. 7M martensite possesses an independent crystal structure, rather than the nanotwin combination of normal non-modulated martensite. The role of 7M martensite in the transformation from the cubic austenite to the tetragonal NM martensite has been clarified, which is at the request of mitigating the large lattice mismatch between the cubic austenite and the tetragonal NM martensite and avoiding the formation of the incoherent NM plate interfaces that represent insurmountable energy barrier

Page generated in 0.0983 seconds