• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Instabilité des équations de Schrödinger

Thomann, Laurent 18 December 2007 (has links) (PDF)
Dans cette thèse on s'est intéressé à différents phénomènes d'instabilités pour des équations de Schrödinger non-linéaires.<br /> Dans la première partie on met en évidence un mécanisme de décohérence de phase pour l'équation (semi-classique) de Gross-Pitaevski en dimension 3. Ce phénomène géométrique est dû à la présence du potentiel harmonique, qui permet de construire -via une méthode de minimisation- des solutions stationnaires se concentrant sur des cercles de R^{3}.<br /> Dans la deuxième partie, on obtient un résultat d'instabilité géométrique pour NLS cubique posée sur une surface riemannienne possédant une géodésique périodique, stable et non-dégénérée. Avec une méthode WKB, on construit des quasimodes non-linéaires, qui permettent d'obtenir des solutions approchées pour des temps pour lesquels l'instabilité se produit. On généralise ainsi des travaux de Burq-Gérard-Tzvetkov pour la sphère.<br /> Enfin, dans la dernière partie on considère des équations sur-critiques sur une variété de dimension d. Grâce à une optique géométrique non-linéaire dans un cadre analytique on peut montrer un mécanisme de perte de dérivées dans les espaces de Sobolev, et une instabilité dans l'espace d'énergie.
2

Etude de perturbations adiabatiques de l'équation de Schrödinger périodique

MARX, Magali 06 December 2004 (has links) (PDF)
Ce travail est consacré à l'étude de perturbations adiabatiques de l'équation de Schrödinger périodique en dimension 1. Précisément, on considère l'opérateur $H_(\varphi,\varepsilon)=-\Delta+[V(x)+W(\varepsilon x+\varphi)]$ lorsque $V$ est périodique, $W$ tend vers $0$ à l'infini, $\varepsilon$ et $\varphi$ sont des paramètres réels. On se place dans le cadre de la limite adiabatique où le paramètre $\varepsilon$ est petit. On s'intéresse aux valeurs propres de $H_(\varphi,\varepsilon)$ dans les lacunes de l'opérateur périodique $-\Delta+V$ ; sous des hypothèses adéquates sur $W$, ces valeurs propres sont créées par les extrema de $W$. Lorsque $W$ a un unique extremum, on montre que ces valeurs propres oscillent autour de certaines énergies quantifiées par une condition de type Bohr-Sommerfeld. L'amplitude des oscillations est exponentiellement petite et déterminée par un coefficient tunnel. Lorsque deux extrema sont en jeu, ils créent chacun une suite de valeurs propres ; celles-ci peuvent être résonantes. Dans ce cas, on met en évidence un phénomène d'éclatement ; ce phénomène est l'analogue de celui bien connu de splitting dans le cas du double puits.
3

Analyse harmonique et fonctions d'ondes sphéroïdales

Mehrzi, Issam 20 February 2014 (has links) (PDF)
Notre travail est motivé par le problème de l'évaluation du déterminant de Fredholm d'un opérateur intégral. Cet opérateur apparait dans l'expression de la probabilité pour qu'un intervalle [?s, s] (s > 0) ne contienne aucune valeur propre d'une matrice aléatoire hermitienne gaussienne. Cet opérateur commute avec un opérateur différentiel de second ordre dont les fonctions propres sont les fonctions d'ondes sphéroïdales de l'ellipsoïde alongé. Plus généralement nous considérons l'opérateur de Legendre perturbé. Nous montrons qu'il existe un opérateur de translation généralisée associé à cet opérateur. En?n, par une méthode d'approximation des solutions de certaines équations différentielles, dite méthode WKB, nous avons obtenu le comportement asymptotique des fonctions d'ondes sphéroïdales de l'ellipsoïde alongé Il s'exprime à l'aide des fonctions de Bessel et d'Airy. Par la même méthode nous avons obtenu le comportement asymptotique des fonctions propres de l'opérateur dfférentiel d'Airy.
4

Analyse harmonique et fonctions d'ondes sphéroïdales / Harmonic analysis and spheroidal wave functions

Mehrzi, Issam 20 February 2014 (has links)
Notre travail est motivé par le problème de l'évaluation du déterminant de Fredholm d'un opérateur intégral. Cet opérateur apparait dans l'expression de la probabilité pour qu'un intervalle [?s, s] (s > 0) ne contienne aucune valeur propre d'une matrice aléatoire hermitienne gaussienne. Cet opérateur commute avec un opérateur différentiel de second ordre dont les fonctions propres sont les fonctions d'ondes sphéroïdales de l'ellipsoïde alongé. Plus généralement nous considérons l'opérateur de Legendre perturbé. Nous montrons qu'il existe un opérateur de translation généralisée associé à cet opérateur. En?n, par une méthode d'approximation des solutions de certaines équations différentielles, dite méthode WKB, nous avons obtenu le comportement asymptotique des fonctions d'ondes sphéroïdales de l'ellipsoïde alongé Il s'exprime à l'aide des fonctions de Bessel et d'Airy. Par la même méthode nous avons obtenu le comportement asymptotique des fonctions propres de l'opérateur dfférentiel d'Airy. / Our work is motivated by the problem of evaluating the Fredholm determinant of an integral operator. This operator appears in the expression of the probability, for a random matrix in the Gaussien Unitary Ensemble, to have no eigenvalue in an interval [?s, s]. This operator commutes with a differential operator wich have the spheroidal wave functions as eingenfunctions. More generally, we consider the perturbated Legendre differential operator. We show that there exists a generalized translation operator associated to the perturbated Legendre dfferential operator. Finaly, by using the WKB method, we have determined the asymptotic behavior of the prolate spheroidal wave functions. This asymptotic behavior involves Bessel and Airy functions. By using the same method, we have obtained similar results for asymptotic behavior of the eigenfunctions of the Airy differential operator.

Page generated in 0.0801 seconds