• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5598
  • 577
  • 282
  • 275
  • 167
  • 157
  • 83
  • 66
  • 50
  • 42
  • 24
  • 21
  • 20
  • 19
  • 12
  • Tagged with
  • 9041
  • 9041
  • 3028
  • 1688
  • 1534
  • 1522
  • 1416
  • 1358
  • 1192
  • 1186
  • 1157
  • 1128
  • 1113
  • 1024
  • 1020
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
721

Extraction and Energy Efficient Processing of Streaming Data

García-Martín, Eva January 2017 (has links)
The interest in machine learning algorithms is increasing, in parallel with the advancements in hardware and software required to mine large-scale datasets. Machine learning algorithms account for a significant amount of energy consumed in data centers, which impacts the global energy consumption. However, machine learning algorithms are optimized towards predictive performance and scalability. Algorithms with low energy consumption are necessary for embedded systems and other resource constrained devices; and desirable for platforms that require many computations, such as data centers. Data stream mining investigates how to process potentially infinite streams of data without the need to store all the data. This ability is particularly useful for companies that are generating data at a high rate, such as social networks. This thesis investigates algorithms in the data stream mining domain from an energy efficiency perspective. The thesis comprises of two parts. The first part explores how to extract and analyze data from Twitter, with a pilot study that investigates a correlation between hashtags and followers. The second and main part investigates how energy is consumed and optimized in an online learning algorithm, suitable for data stream mining tasks. The second part of the thesis focuses on analyzing, understanding, and reformulating the Very Fast Decision Tree (VFDT) algorithm, the original Hoeffding tree algorithm, into an energy efficient version. It presents three key contributions. First, it shows how energy varies in the VFDT from a high-level view by tuning different parameters. Second, it presents a methodology to identify energy bottlenecks in machine learning algorithms, by portraying the functions of the VFDT that consume the largest amount of energy. Third, it introduces dynamic parameter adaptation for Hoeffding trees, a method to dynamically adapt the parameters of Hoeffding trees to reduce their energy consumption. The results show an average energy reduction of 23% on the VFDT algorithm. / Scalable resource-efficient systems for big data analytics
722

How to select the right machine learning approach?

Sánchez Bermúdez, Yoel January 2013 (has links)
In the last years, the use of machine learning methods has increased remarkably and therefore the research in this field is becoming more and more important. Despite this fact, a high uncertainity when using machine learning models is still present. We have a wide variety of machine learning approaches such as decision trees or support vector machines and many applications where machine learning has been proved useful like medical diagnosis or computer vision, but all this possibilities make finding the best machine learning approach for a given application a time consuming and not welldefined process since there is not a rule that tells us what method to use for a given type of data.We attempt to build a system that, using machine learning, is capable to learn the best machine learning approach for a given application. For that, we are working on the hypothesis that similar types of data will have also the same machine learning approachas best learner. Classification algorithms will be the main focus of this research and different statistical measures will be used in order to find these similarities among the data.
723

A Mathematical Study of Learning Dynamics

Keller, Rachael Tara January 2021 (has links)
Data-driven discovery of dynamics, where data is used to learn unknown dynamics, is witnessing a resurgence of interest as data and computational tools have become widespread and increasingly accessible. Advances in machine learning, data science, and neural networks are fueling new data-driven studies and rapidly changing the landscape in almost every field. Meanwhile, classical numerical analysis remains a steady tool to analyze these new problems. This thesis situates emerging works coupling machine learning, neural networks, and data-driven discovery of dynamics in classical numerical theory. We begin by formulating a universal learning framework based in optimization theory. We discuss how three paradigms of machine learning -- supervised, unsupervised, and reinforcement learning -- are encapsulated by this framework and form a general learning problem for discovery of dynamics. Using this formulation, we distill data-driven discovery of dynamics using the classical technique of linear multistep methods with neural networks to its most basic roots for numerical analysis. We establish for the first time a rigorous mathematical theory for using linear multistep methods in discovery of dynamics assuming exact data. We present refined notions of consistency, stability, and convergence for discovery and show convergence results for the popular schemes of Adams-Bashforth, Adams-Moulton, and Backwards Differentiation Formula. Extending the study for noisy data, we propose and analyze the recovery of a smooth approximation to the state using splines and prove new results on discrete differentiation error estimates.
724

Salience Estimation and Faithful Generation: Modeling Methods for Text Summarization and Generation

Kedzie, Christopher January 2021 (has links)
This thesis is focused on a particular text-to-text generation problem, automatic summarization, where the goal is to map a large input text to a much shorter summary text. The research presented aims to both understand and tame existing machine learning models, hopefully paving the way for more reliable text-to-text generation algorithms. Somewhat against the prevailing trends, we eschew end-to-end training of an abstractive summarization model, and instead break down the text summarization problem into its constituent tasks. At a high level, we divide these tasks into two categories: content selection, or “what to say” and content realization, or “how to say it” (McKeown, 1985). Within these categories we propose models and learning algorithms for the problems of salience estimation and faithful generation. Salience estimation, that is, determining the importance of a piece of text relative to some context, falls into a problem of the former category, determining what should be selected for a summary. In particular, we experiment with a variety of popular or novel deep learning models for salience estimation in a single document summarization setting, and design several ablation experiments to gain some insight into which input signals are most important for making predictions. Understanding these signals is critical for designing reliable summarization models. We then consider a more difficult problem of estimating salience in a large document stream, and propose two alternative approaches using classical machine learning techniques from both unsupervised clustering and structured prediction. These models incorporate salience estimates into larger text extraction algorithms that also consider redundancy and previous extraction decisions. Overall, we find that when simple, position based heuristics are available, as in single document news or research summarization, deep learning models of salience often exploit them to make predictions, while ignoring the arguably more important content features of the input. In more demanding environments, like stream summarization, where heuristics are unreliable, more semantically relevant features become key to identifying salience content. In part two, content realization, we assume content selection has already been performed and focus on methods for faithful generation (i.e., ensuring that output text utterances respect the semantics of the input content). Since they can generate very fluent and natural text, deep learning- based natural language generation models are a popular approach to this problem. However, they often omit, misconstrue, or otherwise generate text that is not semantically correct given the input content. In this section, we develop a data augmentation and self-training technique to mitigate this problem. Additionally, we propose a training method for making deep learning-based natural language generation models capable of following a content plan, allowing for more control over the output utterances generated by the model. Under a stress test evaluation protocol, we demonstrate some empirical limits on several neural natural language generation models’ ability to encode and properly realize a content plan. Finally, we conclude with some remarks on future directions for abstractive summarization outside of the end-to-end deep learning paradigm. Our aim here is to suggest avenues for constructing abstractive summarization systems with transparent, controllable, and reliable behavior when it comes to text understanding, compression, and generation. Our hope is that this thesis inspires more research in this direction, and, ultimately, real tools that are broadly useful outside of the natural language processing community.
725

Graph Representation Learning for Unsupervised and Semi-supervised Learning Tasks

Mengyue Hang (11812658) 19 December 2021 (has links)
<div> Graph representation learning and Graph Neural Network (GNNs) models provide flexible tools for modeling and representing relational data (graphs) in various application domains. Specifically, node embedding methods provide continuous representations for vertices that has proved to be quite useful for prediction tasks, and Graph Neural Networks (GNNs) have recently been used for semi-supervised node and graph classification tasks with great success. </div><div> </div><div> However, most node embedding methods for unsupervised tasks consider a simple, sparse graph, and are mostly optimized to encode aspects of the network structure (typically local connectivity) with random walks. And GNNs model dependencies among the attributes of nearby neighboring nodes rather than dependencies among observed node labels, which makes it not expressive enough for semi-supervised node classification tasks. </div><div> </div><div> This thesis will investigate methods to address these limitations, including: </div><div><br></div><div> (1) For heterogeneous graphs: Development of a method for dense(r), heterogeneous graphs that incorporates global statistics into the negative sampling procedure with applications in recommendation tasks;</div><div> (2) For capturing long-range role equivalence: Formalized notions of representation-based equivalence w.r.t regular/automorphic equivalence in a single graph or multiple graph samples, which is employed in a embedding-based models to capture long-range equivalence patterns that reflect topological roles; </div><div> (3) For collective classification: Since GNNs model dependencies among the attributes of nearby neighboring nodes rather than dependencies among observed node labels, we develop an add-on collective learning framework to GNNs that provably boosts their expressiveness for node classification tasks, beyond that of an {\em optimal} WL-GNN, utilizing self-supervised learning and Monte Carlo sampled embeddings to incorporate node labels during inductive learning for semi-supervised node classification tasks.</div>
726

Acceleration of PDE-based biological simulation through the development of neural network metamodels

Lukasz Burzawa (8811842) 07 May 2020 (has links)
PDE models are a major tool used in quantitative modeling of biological and scientific phenomena. Their major shortcoming is the high computational complexity of solving each model. When scaling up to millions of simulations needed to find their optimal parameters we frequently have to wait days or weeks for results to come back. To cope with that we propose a neural network approach that can produce comparable results to a PDE model while being about 1000x faster. We quantitatively and qualitatively show the neural network metamodels are accurate and demonstrate their potential for multi-objective optimization in biology. We hope this approach can speed up scientific research and discovery in biology and beyond.<br>
727

Preventing Vulnerabilities and MitigatingAttacks on the MQTT Protocol

Yara, Ahmad January 2020 (has links)
Syftet med denna studie är att undersöka och förstå hur säkerhetsöverträdelser kan förhindrasoch mitigeras i ett MQTT protokoll för att öka den överliggande säkerheten. Jag är särskiltintresserad av tekniker såsom Fuzzing, Fuzzy Logic och Machine Learning..För att undersöka syftet, analyserade och diskuterade jag tidigare implementationer avFuzzing, Fuzzy Logic och Machine Learning, i ett MQTT protokoll. Analysen visade attFuzzing ansågs vara en väldigt effektiv metod för att förhindra säkerhetsöverträdelser samtatt både Fuzzy Logic och Machine Learning var effektiva metoder för mitigering.Sammanfattningsvis, kan säkerhetsnivån i ett MQTT protokoll öka genom implementering avmetoder som används i syfte att förhindra och mitigera säkerhetsöverträdelser. Exempelviskan man först använda Fuzzing för att hitta och korrigera sårbarheter och därigenomförhindra dem. Därefter kan man antingen använda sig av Fuzzy Logic eller MachineLearning för att mitigera plötsliga attacker på MQTT protokollet när den är i produktion.Detta betyder att att utvecklaren kan kombinera metoder för att både förhindra och mitigeraöverträdelser i syfte att öka säkerhetsnivån i ett MQTT protokoll.
728

Injector diagnosis based on engine angular velocity pulse pattern recognition

Nyman, David January 2020 (has links)
In a modern diesel engine, a fuel injector is a vital component. The injectors control the fuel dosing into the combustion chambers. The accuracy in the fuel dosing is very important as inaccuracies have negative effects on engine out emissions and the controllability. Because of this, a diagnosis that can classify the conditions of the injectors with good accuracy is highly desired. A signal that contains information about the injectors condition, is the engine angular velocity. In this thesis, the classification performance of six common machine learning methods is evaluated. The input to the methods is the engine angular velocity. In addition to the classification performance, also the computational cost of the methods, in a deployed state, is analysed. The methods are evaluated on data from a Scania truck that has been run just like any similar commercial vehicle. The six methods evaluated are: logistic regression, kernel logistic regression, linear discriminant analysis, quadratic discriminant analysis, fully connected neural networks and, convolutional neural networks. The results show that the neural networks achieve the best classification performance. Furthermore, the neural networks also achieve the best classification performance from a, in a deployed state, computational cost effectiveness perspective. Results also indicate that the neural networks can avoid false alarms and maintain high sensitivity.
729

A Multi-Time Scale Learning Mechanism for Neuromimic Processing

Mobus, George E. (George Edward) 08 1900 (has links)
Learning and representing and reasoning about temporal relations, particularly causal relations, is a deep problem in artificial intelligence (AI). Learning such representations in the real world is complicated by the fact that phenomena are subject to multiple time scale influences and may operate with a strange attractor dynamic. This dissertation proposes a new computational learning mechanism, the adaptrode, which, used in a neuromimic processing architecture may help to solve some of these problems. The adaptrode is shown to emulate the dynamics of real biological synapses and represents a significant departure from the classical weighted input scheme of conventional artificial neural networks. Indeed the adaptrode is shown, by analysis of the deep structure of real synapses, to have a strong structural correspondence with the latter in terms of multi-time scale biophysical processes. Simulations of an adaptrode-based neuron and a small network of neurons are shown to have the same learning capabilities as invertebrate animals in classical conditioning. Classical conditioning is considered a fundamental learning task in animals. Furthermore, it is subject to temporal ordering constraints that fulfill the criteria of causal relations in natural systems. It may offer clues to the learning of causal relations and mechanisms for causal reasoning. The adaptrode is shown to solve an advanced problem in classical conditioning that addresses the problem of real world dynamics. A network is able to learn multiple, contrary associations that separate in time domains, that is a long-term memory can co-exist with a short-term contrary memory without destroying the former. This solves the problem of how to deal with meaningful transients while maintaining long-term memories. Possible applications of adaptrode-based neural networks are explored and suggestions for future research are made.
730

Machine Learning-Based Multimedia Analytics

Daniel Mas Montserrat (9089423) 07 July 2020 (has links)
<pre>Machine learning is widely used to extract meaningful information from video, images, audio, text, and other multimedia data. Through a hierarchical structure, modern neural networks coupled with backpropagation learn to extract information from large amounts of data and to perform specific tasks such as classification or regression. In this thesis, we explore various approaches to multimedia analytics with neural networks. We present several image synthesis and rendering techniques to generate new images for training neural networks. Furthermore, we present multiple neural network architectures and systems for commercial logo detection, 3D pose estimation and tracking, deepfakes detection, and manipulation detection in satellite images.<br></pre>

Page generated in 0.1186 seconds