• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7433
  • 1103
  • 1048
  • 794
  • 476
  • 291
  • 237
  • 184
  • 90
  • 81
  • 63
  • 52
  • 44
  • 43
  • 42
  • Tagged with
  • 14406
  • 9224
  • 3943
  • 2366
  • 1924
  • 1915
  • 1721
  • 1624
  • 1513
  • 1439
  • 1373
  • 1354
  • 1341
  • 1275
  • 1269
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
671

Semi-supervised and Self-evolving Learning Algorithms with Application to Anomaly Detection in Cloud Computing

Pannu, Husanbir Singh 12 1900 (has links)
Semi-supervised learning (SSL) is the most practical approach for classification among machine learning algorithms. It is similar to the humans way of learning and thus has great applications in text/image classification, bioinformatics, artificial intelligence, robotics etc. Labeled data is hard to obtain in real life experiments and may need human experts with experimental equipments to mark the labels, which can be slow and expensive. But unlabeled data is easily available in terms of web pages, data logs, images, audio, video les and DNA/RNA sequences. SSL uses large unlabeled and few labeled data to build better classifying functions which acquires higher accuracy and needs lesser human efforts. Thus it is of great empirical and theoretical interest. We contribute two SSL algorithms (i) adaptive anomaly detection (AAD) (ii) hybrid anomaly detection (HAD), which are self evolving and very efficient to detect anomalies in a large scale and complex data distributions. Our algorithms are capable of modifying an existing classier by both retiring old data and adding new data. This characteristic enables the proposed algorithms to handle massive and streaming datasets where other existing algorithms fail and run out of memory. As an application to semi-supervised anomaly detection and for experimental illustration, we have implemented a prototype of the AAD and HAD systems and conducted experiments in an on-campus cloud computing environment. Experimental results show that the detection accuracy of both algorithms improves as they evolves and can achieve 92.1% detection sensitivity and 83.8% detection specificity, which makes it well suitable for anomaly detection in large and streaming datasets. We compared our algorithms with two popular SSL methods (i) subspace regularization (ii) ensemble of Bayesian sub-models and decision tree classifiers. Our contributed algorithms are easy to implement, significantly better in terms of space, time complexity and accuracy than these two methods for semi-supervised anomaly detection mechanism.
672

Apprentissage quantique

Gambs, Sébastien January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
673

Machine learning in systems biology at different scales : from molecular biology to ecology

Aderhold, Andrej January 2015 (has links)
Machine learning has been a source for continuous methodological advances in the field of computational learning from data. Systems biology has profited in various ways from machine learning techniques but in particular from network inference, i.e. the learning of interactions given observed quantities of the involved components or data that stem from interventional experiments. Originally this domain of system biology was confined to the inference of gene regulation networks but recently expanded to other levels of organization of biological and ecological systems. Especially the application to species interaction networks in a varying environment is of mounting importance in order to improve our understanding of the dynamics of species extinctions, invasions, and population behaviour in general. The aim of this thesis is to demonstrate an extensive study of various state-of-art machine learning techniques applied to a genetic regulation system in plants and to expand and modify some of these methods to infer species interaction networks in an ecological setting. The first study attempts to improve the knowledge about circadian regulation in the plant Arabidopsis thaliana from the view point of machine learning and gives suggestions on what methods are best suited for inference, how the data should be processed and modelled mathematically, and what quality of network learning can be expected by doing so. To achieve this, I generate a rich and realistic synthetic data set that is used for various studies under consideration of different effects and method setups. The best method and setup is applied to real transcriptional data, which leads to a new hypothesis about the circadian clock network structure. The ecological study is focused on the development of two novel inference methods that exploit a common principle from transcriptional time-series, which states that expression profiles over time can be temporally heterogeneous. A corresponding concept in a spatial domain of 2 dimensions is that species interaction dynamics can be spatially heterogeneous, i.e. can change in space dependent on the environment and other factors. I will demonstrate the expansion from the 1-dimensional time domain to the 2-dimensional spatial domain, introduce two distinct space segmentation schemes, and consider species dispersion effects with spatial autocorrelation. The two novel methods display a significant improvement in species interaction inference compared to competing methods and display a high confidence in learning the spatial structure of different species neighbourhoods or environments.
674

Autotuning wavefront patterns for heterogeneous architectures

Mohanty, Siddharth January 2015 (has links)
Manual tuning of applications for heterogeneous parallel systems is tedious and complex. Optimizations are often not portable, and the whole process must be repeated when moving to a new system, or sometimes even to a different problem size. Pattern based parallel programming models were originally designed to provide programmers with an abstract layer, hiding tedious parallel boilerplate code, and allowing a focus on only application specific issues. However, the constrained algorithmic model associated with each pattern also enables the creation of pattern-specific optimization strategies. These can capture more complex variations than would be accessible by analysis of equivalent unstructured source code. These variations create complex optimization spaces. Machine learning offers well established techniques for exploring such spaces. In this thesis we use machine learning to create autotuning strategies for heterogeneous parallel implementations of applications which follow the wavefront pattern. In a wavefront, computation starts from one corner of the problem grid and proceeds diagonally like a wave to the opposite corner in either two or three dimensions. Our framework partitions and optimizes the work created by these applications across systems comprising multicore CPUs and multiple GPU accelerators. The tuning opportunities for a wavefront include controlling the amount of computation to be offloaded onto GPU accelerators, choosing the number of CPU and GPU threads to process tasks, tiling for both CPU and GPU memory structures, and trading redundant halo computation against communication for multiple GPUs. Our exhaustive search of the problem space shows that these parameters are very sensitive to the combination of architecture, wavefront instance and problem size. We design and investigate a family of autotuning strategies, targeting single and multiple CPU + GPU systems, and both two and three dimensional wavefront instances. These yield an average of 87% of the performance found by offline exhaustive search, with up to 99% in some cases.
675

Exploiting Application Characteristics for Efficient System Support of Data-Parallel Machine Learning

Cui, Henggang 01 May 2017 (has links)
Large scale machine learning has many characteristics that can be exploited in the system designs to improve its efficiency. This dissertation demonstrates that the characteristics of the ML computations can be exploited in the design and implementation of parameter server systems, to greatly improve the efficiency by an order of magnitude or more. We support this thesis statement with three case study systems, IterStore, GeePS, and MLtuner. IterStore is an optimized parameter server system design that exploits the repeated data access pattern characteristic of ML computations. The designed optimizations allow IterStore to reduce the total run time of our ML benchmarks by up to 50×. GeePS is a parameter server that is specialized for deep learning on distributed GPUs. By exploiting the layer-by-layer data access and computation pattern of deep learning, GeePS provides almost linear scalability from single-machine baselines (13× more training throughput with 16 machines), and also supports neural networks that do not fit in GPU memory. MLtuner is a system for automatically tuning the training tunables of ML tasks. It exploits the characteristic that the best tunable settings can often be decided quickly with just a short trial time. By making use of optimization-guided online trial-and-error, MLtuner can robustly find and re-tune tunable settings for a variety of machine learning applications, including image classification, video classification, and matrix factorization, and is over an order of magnitude faster than traditional hyperparameter tuning approaches.
676

Sur la conception d'une cellule de suivi des performances d'éco-efficacité énergétique des machines électriques tournantes à courants alternatifs / Conception of a cell to monitor the eco-efficiency of AC electrical rotating machines

Zidat, Farid 09 January 2012 (has links)
L'accroissement des performances énergétiques de systèmes industriels motorisés mettant en œuvre des machines électriques à courants alternatifs fait actuellement l'objet d'enjeux majeurs. Les travaux présentés dans ce mémoire s'inscrivent dans ce contexte et concernent la conception d'un outil (cellule) de diagnostic énergétique. Le verrou majeur à lever consiste à estimer le couple électromagnétique des machines AC, sans décapoter leurs boîtes à bornes ni mesurer leurs vitesses de rotation. La thèse a permis de développer des techniques non invasives, basées sur la mesure du courant de ligne et/ou du flux de dispersion dans l'environnement proche de la machine. Des analyses fines de la distribution du flux de dispersion autour de la carcasse ont été réalisées car le flux est atténué et déphasé sous l'influence des courants de Foucault. L'analyse a également permis de distinguer la contribution des conducteurs actifs de celle des têtes de bobines dans la génération du flux externe. Une image du flux d'entrefer a donc pu être mise en évidence, ainsi que la manière de la mesurer, conduisant à la définition de protocoles de détermination du couple. Ces derniers sont complétés par une méthode reposant sur la mesure ou l'estimation à partir du flux de dispersion du courant de phase. Les méthodes dégagées ont été appliquées à des machines asynchrones dont les puissances s'échelonnent de 3 à 200 kW. La conception de la cellule s'est étendue à son architecture et, notamment, à la transmission sans fil des informations collectées. La gestion de l'autonomie a été un critère prépondérant durant toute l'étude, conduisant d'une part à l'élaboration d'algorithmes légers donc peu énergivores pour la cellule et, d'autre part, à l'introduction du flux de dispersion comme source d'énergie alternative. / The energetic performance increase of industrial processes using AC electrical rotating machines is nowadays of great concern. The developments presented in this thesis are situated in this context and are about the design of an energy monitoring tool (cell). The main scientific barrier to lift is the estimation of the electromagnetic torque of AC machines without dismounting their terminal box or measuring their shaft speed. Non invasive methods have been developed; they are based on the measurement of the phase current and/or the external flux in the immediate vicinity of the machine. Analyses of the external flux distribution around the external housing were made : the magnetic flux is attenuated and phase shifted because of the eddy current effect. Then, the analysis has made it possible to distinguish the contribution of the wires placed in the slots from the effect of the end-windings in the external flux emission. The work explains how to determine an image of the external flux, as well as the way to measure it. That leads to the definition of protocols for determining the electromagnetic torque, which, for some of them use current measurements or its estimation from the external flux. The proposed methods have been applied to induction machines with rated powers between 3 to 200 kW. The cell structure is described, in particular the wireless transmission of the measured information. The autonomy of the cell is a factor taken into account troughout the study, leading to the development of little-intensive computing algorithms. It is also shown that the external flux can be used as an additional energy source.
677

Logistic regression with conjugate gradient descent for document classification

Namburi, Sruthi January 1900 (has links)
Master of Science / Department of Computing and Information Sciences / William H. Hsu / Logistic regression is a model for function estimation that measures the relationship between independent variables and a categorical dependent variable, and by approximating a conditional probabilistic density function using a logistic function, also known as a sigmoidal function. Multinomial logistic regression is used to predict categorical variables where there can be more than two categories or classes. The most common type of algorithm for optimizing the cost function for this model is gradient descent. In this project, I implemented logistic regression using conjugate gradient descent (CGD). I used the 20 Newsgroups data set collected by Ken Lang. I compared the results with those for existing implementations of gradient descent. The conjugate gradient optimization methodology outperforms existing implementations.
678

Predicting sentiment-mention associations in product reviews

Vaswani, Vishwas January 1900 (has links)
Master of Science / Department of Computing and Information Sciences / Doina Caragea / With the rising trend in social networking, more people express their opinions on the web. As a consequence, there has been an increase in the number of blogs where people write reviews about the products they buy or services they experience. These reviews can be very helpful to other potential customers who want to know the pros and cons of a product, and also to manufacturers who want to get feedback from customers about their products. Sentiment analysis of online data (such as review blogs) is a rapidly growing field of research in Machine Learning, which can leverage online reviews and quickly extract the sentiment of a whole blog. The accuracy of a sentiment analyzer relies heavily on correctly identifying associations between a sentiment (opinion) word and the targeted mention (token or object) in blog sentences. In this work, we focus on the task of automatically identifying sentiment-mention associations, in other words, we identify the target mention that is associated with a sentiment word in a sentence. Support Vector Machines (SVM), a supervised machine learning algorithm, was used to learn classifiers for this task. Syntactic and semantic features extracted from sentences were used as input to the SVM algorithm. The dataset used in the work has reviews from car and camera domain. The work is divided into two phases. In the first phase, we learned domain specific classifiers for the car and camera domains, respectively. To further improve the predictions of the domain specific classifiers we investigated the use of transfer learning techniques in the second phase. More precisely, the goal was to use knowledge from a source domain to improve predictions for a target domain. We considered two transfer learning approaches: a feature level fusion approach and a classifier level fusion approach. Experimental results show that transfer learning can help to improve the predictions made using the domain specific classifier approach. While both the feature level and classifier level fusion approaches were shown to improve the prediction accuracy, the classifier level fusion approach gave better results.
679

The automatic acquisition of knowledge about discourse connectives

Hutchinson, Ben January 2005 (has links)
This thesis considers the automatic acquisition of knowledge about discourse connectives. It focuses in particular on their semantic properties, and on the relationships that hold between them. There is a considerable body of theoretical and empirical work on discourse connectives. For example, Knott (1996) motivates a taxonomy of discourse connectives based on relationships between them, such as HYPONYMY and EXCLUSIVE, which are defined in terms of substitution tests. Such work requires either great theoretical insight or manual analysis of large quantities of data. As a result, to date no manual classification of English discourse connectives has achieved complete coverage. For example, Knott gives relationships between only about 18% of pairs obtained from a list of 350 discourse connectives. This thesis explores the possibility of classifying discourse connectives automatically, based on their distributions in texts. This thesis demonstrates that state-of-the-art techniques in lexical acquisition can successfully be applied to acquiring information about discourse connectives. Central to this thesis is the hypothesis that distributional similarity correlates positively with semantic similarity. Support for this hypothesis has previously been found for word classes such as nouns and verbs (Miller and Charles, 1991; Resnik and Diab, 2000, for example), but there has been little exploration of the degree to which it also holds for discourse connectives. We investigate the hypothesis through a number of machine learning experiments. These experiments all use unsupervised learning techniques, in the sense that they do not require any manually annotated data, although they do make use of an automatic parser. First, we show that a range of semantic properties of discourse connectives, such as polarity and veridicality (whether or not the semantics of a connective involves some underlying negation, and whether the connective implies the truth of its arguments, respectively), can be acquired automatically with a high degree of accuracy. Second, we consider the tasks of predicting the similarity and substitutability of pairs of discourse connectives. To assist in this, we introduce a novel information theoretic function based on variance that, in combination with distributional similarity, is useful for learning such relationships. Third, we attempt to automatically construct taxonomies of discourse connectives capturing substitutability relationships. We introduce a probability model of taxonomies, and show that this can improve accuracy on learning substitutability relationships. Finally, we develop an algorithm for automatically constructing or extending such taxonomies which uses beam search to help find the optimal taxonomy.
680

A recurrent neural network approach to quantification of risks surrounding the Swedish property market

Vikström, Filip January 2016 (has links)
As the real estate market plays a central role in a countries financial situation, as a life insurer, a bank and a property developer, Skandia wants a method for better assessing the risks connected to the real estate market. The goal of this paper is to increase the understanding of property market risk and its covariate risks and to conduct an analysis of how a fall in real estate prices could affect Skandia’s exposed assets.This paper explores a recurrent neural network model with the aim of quantifying identified risk factors using exogenous data. The recurrent neural network model is compared to a vector autoregressive model with exogenous inputs that represent economic conditions.The results of this paper are inconclusive as to which method that produces the most accurate model under the specified settings. The recurrent neural network approach produces what seem to be better results in out-of-sample validation but both the recurrent neural network model and the vector autoregressive model fail to capture the hypothesized relationship between the exogenous and modeled variables. However producing results that does not fit previous assumptions, further research into artificial neural networks and tests with additional variables and longer sample series for calibration is suggested as the model preconditions are promising.

Page generated in 0.0619 seconds