• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Recycling and Reuse of Wastes as Construction Material through Geopolymerization

Ahmari, Saeed January 2012 (has links)
Storage of mine tailings and waste concrete imposes economical and environmental impacts. Researchers have attempted to reuse wastes as construction material by utilizing ordinary Portland cement (OPC) to stabilize them. This method, however, has a number of limitations related to OPC. In this research, a recent technology called geopolymerization is used to stabilize mine tailings and concrete waste so that they can be completely recycled and reused. The research includes three main parts. The first part studies the effect of different factors on the mechanical properties, micro/nano structure, and elemental and phase composition of mine tailings-based geopolymer binder. The second part investigates the feasibility of producing geopolymer bricks using mine tailings. The physical and mechanical properties, micro/nano structure, durability, and environmental performance of the produced bricks are studied in a systematic way. Moreover, the enhancement of the mine tailings-based geopolymer bricks by adding cement kiln dust (CKD) is studied. The third part of the research investigates the recycling of the fines fraction of crushed waste concrete to produce binder through geopolymerization in order to completely recycle concrete waste. The results indicate the viability of geopolymerization of mine tailings by optimizing the synthesis conditions. By properly selecting these factors, mine tailings-based geopolymer bricks can be produced to meet the ASTM standard requirements and to be environmentally safe by effectively immobilizing the heavy metals in the mine tailings. The physical and mechanical properties and durability of the mine tailings-based geopolymer bricks can be further enhanced by adding a small amount of CKD. The results also show that the fines fraction of crushed waste concrete can be used together with fly ash to produce high performance geopolymer binder. Incorporation of calcium in the geopolymer structure and coexistence of the calcium products such as CSH gel and the geopolymer gel explains the enhancement of the mine tailings-based geopolymer bricks with CKD and the high performance of geopolymer binder from the waste concrete fines and fly ash. The research contributes to sustainable development by promoting complete recycling and utilization of mine tailings and concrete waste as construction material.
2

Global soil respiration: interaction with macroscale environmental variables and response to climate change

Jian, Jinshi 05 February 2018 (has links)
The response of global soil respiration (Rs) to climate change determines how long the land can continue acting as a carbon sink in the future. This dissertation research identifies how temporal and spatial variation in environmental factors affects global scale Rs modeling and predictions of future Rs under global warming. Chapter 1 describes the recommend time range for measuring Rs across differing climates, biomes, and seasons and found that the best time for measuring the daily mean Rs is 10:00 am in almost all climates and biomes. Chapter 2 describes commonly used surrogates in Rs modeling and shows that air temperature and soil temperature are highly correlated and that they explain similar amounts of Rs variation; however, average monthly precipitation between 1961 and 2014, rather than monthly precipitation for a specific year, is a better predictor in global Rs modeling. Chapter 3 quantifies the uncertainty generated by four different assumptions of global Rs models. Results demonstrate that the time-scale of the data, among other sources, creates a substantial difference in global estimates, where the estimate of global annual Rs based on monthly Rs data (70.85 to 80.99 Pg C yr-1) is substantially lower than the current benchmark for land models (98 Pg C yr-1). Chapter 4 simulates future global Rs rates based on two temperature scenarios and demonstrates that temperature sensitivity of Rs will decline in warm climates where the level of global warming will reach 3°C by 2100 relative to current air temperature; however, these regional decelerations will be offset by large Rs accelerations in the boreal and polar regions. Chapter 5 compares CO2 fluxes from turfgrass and wooded areas of five parks in Blacksburg, VA and tests the ability of the Denitrification-Decomposition model to estimate soil temperature, moisture and CO2 flux across the seasons. Cumulatively, this work provides new insights into the current and future spatial and temporal heterogeneity of Rs and its relationship with environmental factors, as well as key insights in upscaling methodology that will help to constrain global Rs estimates and predict how global Rs will respond to global warming in the future. / Ph. D. / CO₂ flux emitted from global soil is the second largest carbon exchange between the land and atmosphere. Accurately estimating global soil CO₂ flux and how it responds to climate change is critical to predict terrestrial carbon stocks. The objectives of this dissertation are to evaluate how time-scale affects our ability to estimate global soil CO₂ flux. In Chapter 1, we show that the best time period for measuring daily mean soil CO₂ flux is at around 10:00 am in almost all climate regions and vegetation types. The previously recommended time range (09:00 am and 12:00 pm) reasonably captures the daily mean soil CO₂ flux. The results from Chapter 2 indicate that air temperature is a good proxy for soil temperature in modeling global soil CO₂ flux. However, monthly precipitation is a uniformly poor proxy for soil water content; instead, average monthly precipitation is a better predictor for global soil CO₂ flux modeling. Chapter 3 demonstrates that the time-scale used in parameterizing models strongly affects the prediction of global CO₂ flux. When using monthly time-scale soil CO₂ flux and air temperature data, soil CO₂ flux increases as air temperature increases at air temperatures below 27 ℃, but soil CO₂ flux begins to decrease when air temperature is over 27 ℃. However, when using annual time-scale data, this response to temperature is masked, soil CO₂ flux increases as air temperature increases in all temperature conditions. As a result, the estimate of global annual soil CO₂ flux, based on monthly soil respiration data (70.85 to 80.99 Pg C yr⁻¹ ), is lower than the estimate based on the annual soil respiration data (98 Pg C yr⁻¹ ). Chapter 4 shows that if the level of global warming maintains its current rate (3ºC by the year 2100), then the annual soil CO₂ flux will either decrease or remains the same in arid, winter-dry temperate and tropical climate regions. However, these regional decelerations were offset by large soil CO₂ flux accelerations in the boreal and polar regions. Chapter 5 shows a significant difference in CO₂ flux among the five selected parks in Blacksburg, VA. The Denitrification-Decomposition model, despite having been developed for agriculture and undeveloped lands, closely estimates soil temperature, moisture and CO₂ flux across the seasons and therefore can be used to estimate and understand CO₂ fluxes from urban ecosystems in future studies. This study highlights that the relationship between soil CO₂ fluxes and environmental factors such as air temperature and precipitation differs from region to region. The study also demonstrates that daily and monthly time-scale soil CO₂ fluxes and environmental data help constrain global soil CO₂ flux estimates and help to predict how global soil CO₂ fluxes will respond to global warming in the future.
3

Linkage of Macro- and Micro-scale Modelling Tools for Additive Manufacturing

Sjöström, Julia January 2020 (has links)
Additive manufacturing methods for steel are competing against commercial production in an increasing pace. The geometry freedom together with the high strength and toughness due to extreme cooling rates make this method viable to use for high-performance components. The desirable material properties originate from the ultrafine grain structures. The production is often followed by a post hardening heat treatment to induce precipitation of other phases. The printing process does however bring several challenges such as cracking, pore formation, inclusions, residual stresses and distortions. It is therefore important to be able to predict the properties such as temperature evolution and residual stresses of the resulting part in order to avoid time consuming trial-and-error and unnecessary material waste. In order to link different parts and length scales of the process, the integrated computational materials engineering framework can be used where linkage tools couples results of different length scales. 18Ni300 maraging steel is a material that has been used extensively to produce parts by additive manufacturing, but there is still a wide scope for optimising the process and properties. In this thesis, the integrated computational materials engineering inspired framework is applied to link the process to the microstructure, which dictates the properties. Temperature evolution strongly influences the material properties, residual stresses and distortion in additive manufacturing. Therefore, simulations of temperature evolution for a selective laser melted 18Ni300 maraging steel have been performed by Simufact Additive and linked with the microstructure prediction tools in Thermo-Calc and DICTRA. Various printing parameters have been examined and resulting temperatures, cooling rates, segregations and martensitic start temperatures compared for different locations of the build part. Additionally, residual stresses and distortions were investigated in Simufact. It was found that higher laser energy density caused increased temperatures and cooling rates which generally created larger segregations of alloying elements and lower martensitic start temperatures at the intercellular region. There is however an impact from cooling rate and temperature independent of the energy density which makes energy density not an individual defining parameter for the segregations. By decreasing the baseplate temperature, lower temperatures below the martensitic start temperature were reached, enhancing martensite transformation. Primary dendrite arm spacing calculations were used to validate the cooling rates. The cell size corresponded well to literature of <1 μm. Distortions and residual stresses were very small. The calibration was based according to literature and need experimental values to be validated. The integrated framework demonstrated in this thesis provides an insight into the expected properties of the additively manufactured part which can decrease and replace trial-and-error methods. / dditiva tillverkningsmetoder för stål tävlar mot kommersiell produktion i en ökande takt. Geometrifriheten tillsammans med hög styrka och slagseghet på grund av extrema kylhastigheter gör den här metoden intressant att använda för högpresterande komponenter. De önskvärda materialegenskaperna härstammar från den ultrafina mikrostrukturen. Processen följs ofta av en värmebehandlande härdning för att inducera utskiljningar av andra faser. Printing processen innebär dock flertalet utmaningar som exempelvis sprickbildning, porer, inneslutningar, restspänningar och förvrängningar. Det är därför intressant och viktigt att förutspå egenskaper såsom temperaturutveckling och restspänningar av den slutgiltiga komponenten för att minska tidskrävande ”trial-and-error” och onödigt materialsvin. För att länka ihop olika delar och längdskalor av processen kan ”the integrated computational materials engineering” strukturen användas där länkverktyg kopplar ihop resultat av olika längdskalor. 18Ni300 maraging stål är ett material som har använts till additivt tillverkade produkter i hög utsträckning men det finns fortfarande mycket utrymme för optimering av processen och egenskaperna. I den här avhandlingen, den ”integrated computational materials engineering” inspirerade tillvägagångssättet används för att länka processen med mikrostrukturen, vilken bestämmer egenskaperna. Temperaturutveckling påverkar kraftigt materialegenskaper, restspänningar och deformation vid additiv tillverkning. Förutsägelse av temperatur för ett selektivt lasersmält 18Ni300 stål har därför genomförts i Simufact Additive och länkats med mikrostruktursförutsägande redskapen Thermo-Calc och DICTRA. Olika maskinparametrar har undersökts och efterföljande temperaturer, kylhastigheter, segregeringar och martensitiska starttemperaturer jämförts för olika delar av geometrin. Tilläggningsvis var även restspänningar och deformationer undersökta i Simufact. Det konstaterades att högre energidensitet för lasern orsakade högre temperaturer och kylhastighet vilket generellt skapade mer segregeringar av legeringsämnen och lägre martensitisk starttemperatur i de intercellulära områdena. Det är däremot en gemensam påverkan av kylhastighet och temperatur vilket gör att energidensitet inte är den enskilda bestämmande parametern över segregeringarna. Genom att sänka temperaturen på basplattan uppnåddes lägre temperaturer under den martensitiska starttemperaturen vilket förenklar den martensistiska omvandlingen. Beräkningar av primär dendritisk armlängd användes för att validera kylhastigheterna. Cellstorleken överensstämde bra med litteraturen på <1 μm. Deformationer och restspänningar var väldigt små. Kalibreringarna baserades på litteraturvärden och kräver experimentella värden för att valideras. Den integrerade strukturen  som demonstreras i den här avhandlingen förser en insikt i de förväntade egenskaperna av en additivt tillverkad del vilket kan minska och ersätta ”trial-and-error” metoder.
4

Microbial-Induced Calcium Carbonate Precipitation : from micro to macro scale

Wang, Yuze January 2019 (has links)
Microbial-Induced Calcium Carbonate (CaCO3) Precipitation (MICP) is a biological process in which microbial activities alter the surrounding aqueous environment and induce CaCO3 precipitation. Because the formed CaCO3 crystals can bond soil particles and improve the mechanical properties of soils such as strength, MICP has been explored for potential engineering applications such as soil stabilisation. However, it has been difficult to control and predict the properties of CaCO3 precipitates, thus making it very challenging to achieve homogeneous MICP-treated soils with the desired mechanical properties. This PhD study investigates MICP at both micro and macro scales to improve the micro-scale understandings of MICP which can be applied at the macro-scale for improving the homogeneity and mechanical properties of MICP-treated sand. A microfluidic chip which models a sandy soil matrix was designed and fabricated to investigate the micro-scale fundamentals of MICP. The first important finding was that, during MICP processes, phase transformation of CaCO3 can occur, which results in smaller and less stable CaCO3 crystals dissolving at the expense of growth of larger and more stable CaCO3 crystals. In addition, it was found that bacteria can aggregate after being mixed with cementation solution, and both bacterial density and the concentration of cementation solution affect the size of aggregates, which may consequently affect the transport and distribution of bacteria in a soil matrix. Furthermore, bacterial density was found to have a profound effect on both the growth kinetics and characteristics of CaCO3. A higher bacterial density resulted in a quicker formation of a larger amount of smaller crystals, whereas a lower bacterial density resulted in a slower formation of fewer but larger crystals. Based on the findings from micro-scale experiments, upscaling experiments were conducted on sandy soils to investigate the effect of injection interval on the strength of MICP treated soils and the effects of bacterial density and concentration of cementation solution on the uniformity of MICP treated soils. Increasing the interval between injections of cementation solution (from 4 h to 24 h) increased the average size of CaCO3 crystals and the resulting strength of MICP-treated sand. An optimised combination of bacterial density and cementation solution concentration resulted in a relative homogeneous distribution of CaCO3 content and suitable strength and stiffness of MICP-treated sand. This thesis study revealed that a microfluidic chip is a very useful tool to investigate the micro-scale fundamentals of MICP including the behaviour of bacteria and the process of CaCO3 precipitation. The optimised MICP protocols will be useful for improving the engineering performance of MICP-treated sandy soils such as uniformity and strength.
5

Prediction of Fracture Toughness and Durability of Adhesively Bonded Composite Joints with Undesirable Bonding Conditions

Musaramthota, Vishal 02 November 2015 (has links)
Advanced composite materials have enabled the conventional aircraft structures to reduce weight, improve fuel efficiency and offer superior mechanical properties. In the past, materials such as aluminum, steel or titanium have been used to manufacture aircraft structures for support of heavy loads. Within the last decade or so, demand for advanced composite materials have been emerging that offer significant advantages over the traditional metallic materials. Of particular interest in the recent years, there has been an upsurge in scientific significance in the usage of adhesively bonded composite joints (ABCJ’s). ABCJ’s negate the introduction of stress risers that are associated with riveting or other classical techniques. In today’s aircraft transportation market, there is a push to increase structural efficiency by promoting adhesive bonding to primary joining of aircraft structures. This research is focused on the issues associated with the durability and related failures in bonded composite joints that continue to be a critical hindrance to the universal acceptance of ABCJ’s. Of particular interest are the short term strength, contamination and long term durability of ABCJ’s. One of the factors that influence bond performance is contamination and in this study the influence of contamination on composite-adhesive bond quality was investigated through the development of a repeatable and scalable surface contamination procedure. Results showed an increase in the contaminant coverage area decreases the overall bond strength significantly. A direct correlation between the contaminant coverage area and the fracture toughness of the bonded joint was established. Another factor that influences bond performance during an aircraft’s service life is its long term strength upon exposure to harsh environmental conditions or when subjected to severe mechanical loading. A test procedure was successfully developed in order to evaluate durability of ABCJ’s comprising severe environmental conditioning, fatiguing in ambient air and a combination of both. The bonds produced were durable enough to sustain the tests cases mentioned above when conditioned for 8 weeks and did not experience any loss in strength. Specimens that were aged for 80 weeks showed a degradation of 10% in their fracture toughness when compared to their baseline datasets. The effect of various exposure times needs to be further evaluated to establish the relationship of durability that is associated with the fracture toughness of ABCJ’s.

Page generated in 0.0385 seconds