Spelling suggestions: "subject:"macroinvertebrates community""
1 |
Using Macroinvertebrates to Assess the Effects of Nutrient Input Between the Nolichucky and Pigeon RiversGrizzard, Anna 01 May 2022 (has links)
Previous work found significant differences in growth rates of native mussels at locations downstream from the regulated Walter’s Dam and the out-of-service, free-flowing Davy Crockett Dam. The purpose of this study is to investigate differences within the macroinvertebrate communities related to factors driving the differences in mussel growth between rivers. Macroinvertebrate samples were collected following the Tennessee Department of Environment and Conservation protocol for SQKICK collection and analyzed using the Tennessee Macroinvertebrate Index (TMI). There were no significant differences in TMI scores between the downstream sites of the rivers, but there were significant increases in chlorophylla, dissolved oxygen, and specific conductance downstream compared to upstream in both rivers. This suggests that these indices are suitable to identify pollution changes, but potentially not the productivity differences that impacted mussel growth.
|
2 |
Assessing Organic Matter Breakdown and Associated Macroinvertebrate Community Structure in Headwater Streams: Effects of Hydrologic Gradients and Upland Timber HarvestingJarrell, Miller Scott 01 July 2009 (has links)
I examined the effects of hydrologic gradients and upland timber harvesting with different streamside management zone widths on yellow-poplar (Liriodendron tulipifera) processing and the associated macroinvertebrate community structure in the Cumberland Plateau ecophysic region, U.S.A. Prior to upland timber harvesting, 5.0 ± 0.1 g yellow-poplar leaf packs were constructed, zip-tied to gutter nails, and placed into 7 perennial and 6 temporary stream reaches with similar physiochemical and geomorphic characteristics. From December 2007 to May 2008, 3–5 leaf packs were collected per reach monthly. I found significant differences in the functional feeding group composition. Temporary reaches contained higher shredder, gathering-collector, predator, and total macroinvertebrate abundances. Shredder and total macroinvertebrate biomass was also higher in the temporary stream reaches. Gathering-collector biomass along one measurement was higher in the temporary streams. Perennial and temporary stream reaches contained similar macroinvertebrate diversity. Logging operations occurred from May 2008–December 2008. After logging operations ended, yellow-poplar leaf packs were placed into the perennial and temporary reaches of 3 control and 3 treatment streams (2 with same SMZ width, 1 different). From December 2008–May 2009. Leaf packs were collected monthly. Within the temporary and perennial stream reaches, no significant differences were detected between control and treatment yellow-poplar processing rates. No significant differences were detected between the control and treatment functional feeding group composition in abundance and biomass. Post-harvest, taxon richness increased in both the perennial control and treatment streams, while richness declined in the temporary control and increased in the temporary treatment. My findings indicate that when water is present, organic matter processing will function similarly to downstream reaches that have continual water flow. During seasonal flow patterns, macroinvertebrate communities associated with organic matter are present in temporary streams and may exceed perennial stream reaches in their density and biomass. This indicates that temporary streams are physically suitable habitats for macroinvertebrate fauna and contribute to a stream’s form and function. Overall, no observed distinct response in yellow-poplar processing rates or the associated macroinvertebrate community structure was detected within the perennial or temporary streams. Macroinvertebrate community structure varied spatially and temporally. On the taxonomic level, increases in taxa-specific abundance and biomass remain to be explained. Future research assessing interactions on the taxonomic level might help explain increases or decreases in abundance and biomass in relation to treatment effects. This study documented the response of organic matter breakdown and associated macroinvertebrate community structure during the 1st 5 months after logging. Thus, it is only a snapshot of stream ecosystem response to disturbance. Long-term studies are needed to evaluate full ecosystem response and recovery. Due to uncontrollable factors, I was not able to evaluate the success of different SMZ widths. Results documented should be treated with hesitancy, until full ecosystem response has been documented.
|
3 |
Benthic Community Structure Response to Flow Dynamics in Tropical Island and Temperate Continental StreamsGorbach, Kathleen R. January 2012 (has links)
No description available.
|
4 |
Estructura y composición de las comunidades de macroinvertebrados acuáticos en ríos altoandinos del Ecuador y Perú. Diseño de un sistema de medida de la calidad del agua con índices multimétricosVillamarín Flores, Christian Patricio 09 July 2012 (has links)
En la presente tesis se muestrearon ríos sobre los 2000 msnm (ríos altoandinos tropicales) que se distribuyen en la amplia región de los Andes del Norte (Ecuador) y los Andes Centrales (Perú) en Sudamérica. El muestreo de las 123 localidades se realizó en época seca, las cuales se seleccionaron tomando en cuenta su grado de alteración, que van desde sin o poca alteración (referencia) hasta muy alterados.
En una primera instancia se analizaron las carácteristicas fisicoquímicas e hidromorfológicas de los ríos, las cuales mostraron una alta influencia de la altitud. Se registraron reducciones en la temperatura y oxígeno a medida que la altitud se incrementaba, por otra parte las diferencias en la heterogeneidad de los hábitats, así como la calidad del bosque de ribera fueron dos factores con un alta importancia al momento de caracterizar los ríos altoandinos. Se econtraron diferencias en la mineralización en los diferentes dominios morfotectónicos, siendo más elevados los valores de conductividad en las zonas del sur, debido a la geomorfología propia de cada zona.
La comunidad bentónica mostro estar altamente influenciada por la altitud y la latitud. La altitud mostró intervenir positiva o negativamente en la abundancia y frecuencia de algunos géneros como Hyalella, Podonomopsis, Claudioperla, Anomalopsyche, Paltostoma, Rheotanytarsus, Camelobaetidius, etc. Por su parte, la latitud reveló la tendencia de algunos taxa a disminuir o aumentar su abundancia y frecuencia, tal es el caso de Anacroneuria, Camelobaetidius, Anchytarsus, Hagenulopsis, Claudioperla, Austrelmis, Smicridea, etc.
Por otra parte y como punto novedoso para el conicimiento de la zona de estudio, se analizó a la familia Chironomidae a nivel de género, hecho importante para el conocimiento taxónomico de la familia en ríos tropicales de los Andes sobre los 2000 msnm, ya que no hay trabajos a este nivel taxonómico en la zona altoandina. La familia Chironomidae mostro patrones similares a los de la comunidad bentónica en general, sindo los factores relacionados con la altitud (oxígeno y temperatura) lo que determinan en gran medida su distrbución, sin embargo, al igua que el resto de la comunidad la heterogenidad de hábitats mostraron ser de suma importancia para la familia de los quironómidos. Además, la litografía y la biogeografía fueron dos factores que determinan la composición de esta familia.
Con esta visión general, se analizaron los patrones de biodiversidad de estos ríos, donde se determinó que la comunidad bentónica altoandina tiene una amplia variabilidad en la diversidad local mientras que si analizamos la diversidad Gamma hay una tendencia a disminuir tanto a medida que la altitud y la latitud aumentan. Por su parte se evidenció cambios en la composición de la comunidad, la cual fue evidente también en ambos gradientes, sin embargo debido a la amplia heterogeneidad ambiental fue necesario analizar la reposición de especies a diferentes escalas de agrupación ya que sin esta corrección los cambios ambientales locales no permiten visualizar los patrones existentes en la comunidad, indicandonos la importancia de los factores locales en la biodiversidad regional.
Finalmente, y con la recopilación de la estructura, composición y distribución de la fauna béntica, así como de la variabilidad ambiental tanto natural como antropogénica, se desarrolló un índice multimétrico que nos permite evaluar la calidad ecológica de los ríos altoandinos aplicable a una zona geográfica amplia. Los análisis previos al desarrollo del índice multimétrico demostraron que la variabilidad de la zona alta (localidades de páramo y puna) y la zona baja (localidades de bosque montano) era diferente. Posteriormente usando a las comunidades de macroinvertebrados acuáticos de las localidades de referencia se determinaron a dichas zonas como tipologías diferentes, las cuales se usaron para desarrollar el IMEERA-B (Bosque) y el IMEERA-P (Páramos y Punas). En nuestro estudio en la zona baja el gradiente de presión está determinado por la contaminación orgánica y la degradación hidromorfológica, y en la zona alta el gradiente está influenciado por la contaminación orgánica y la heterogeneidad del hábitat. Finalmente, se determinaron 6 métricas para IMEERA-B que evalúan la riqueza, el hábito y la tolerancia/intolerancia, y para el IMEERA-P se determinaron 4 métricas que evalúan la riqueza y la tolerancia/intolerancia. / STRUCTURE AND COMPOSITION OF AQUATIC MACROINVERTEBRATES COMMUNITIES IN HIGHLAND ANDEAN RIVERS OF ECUADOR AND PERU. DESIGN OF A MEASURE OF WATER QUALITY WITH MULTIMETRIC INDEXES
In this thesis we sampled Highland Andean Rivers above 2000 m a.s.l. (tropical andean highland rivers) which are distributed in a wide geographical region of the North Andes (Ecuador) and Central Andes (Peru) in South America. In total 123 sites were sampled in dry season, which were selected taking into account the anthropogenic influence gradient, ranging from no alteration, little alteration (i.e., reference) to highly altered.
The physico-chemical caracteristics of rivers showed a high altitud influence. We recorded a decrease in both temperature and oxygen as altitude increases. Habitat heterogeneity and the riverine forest quality were identified as determinant enviromental characteristics regarding the andean higland rivers studied. The mineralization show differences between the morphotectonics groups, while were the conductivity was higher at the south, depending on the geomorphology of each zone.
The sampled macroinvertebrate assemblages were influenced by both latitudinal and altitudinal gradients. In detail, assemblages showed different gradient responses (positive or negative), depending of the organism and its requirements. The patterns of abundance and richness are probably determined by the environmental variability observed, and described by the temperature, oxygen, habitat heterogeneity and the presence, and absence of riverine forest. The family Chironomidae, as we expected, showed different responses depending of the genus, while the composition of the family was determined mainly by temperature, oxygen, lithography. and biogeography.
We also studied the biodiversity patterns of Highland Andean Rivers rivers. The benthic community assemblage showed a high variability at local diversity (alpha diversity), while the gamma diversity decreased in both latitude and altitude gradients. Moreover, the community presented some discontinuities in the beta diversity. Regarding latitudinal gradient, the composition of assemblage changed in each morphological group, while altitude changes were described by vegetation types (mountain forest or páramo-puna) or presence or absence of riverine forest.
Finally, using the aquatic macroinvertebrate communities of the reference sites, two different zones were identified as distinct from each other: from 2000 to 3500 m a.s.l and those sites at altitudes higher than 3500 m a.sl.. For such reasons two versions of a multi-metric index - the IMEERA index - were developed. The IMEERA B index includes six metrics evaluating richness, habit and tolerance/intolerance. The IMEERA P index was calculated using four metrics evaluating richness and tolerance/intolerance. Results showed that in lower altitudes (Bosque river type, IMEERA-B index), the pressure gradient was driven by the organic pollution and the hydromorphological degradation, while in higher altitudes (Páramo and Puna river types; IMEERA-P river type), the gradient was driven by the organic pollution and the habitat heterogeneity.
|
Page generated in 0.0751 seconds