• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 376
  • 118
  • 76
  • 50
  • 22
  • 6
  • 6
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 849
  • 152
  • 125
  • 115
  • 90
  • 79
  • 68
  • 65
  • 64
  • 61
  • 55
  • 49
  • 49
  • 49
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

Macrophage Accumulation Near Injured Neuronal Cell Bodies is Necessary and Sufficient for Peripheral Axon Regeneration

Niemi, Jon Paul 08 February 2017 (has links)
No description available.
312

Inverse correlation between IL-10 and HIF-1a in macrophages infected with Histoplasma capsulatum

Fecher, Roger A. 30 September 2016 (has links)
No description available.
313

Consequences of differential macrophage activation after spinal cord trauma

Longbrake, Erin E. 17 May 2007 (has links)
No description available.
314

Nucleotide-binding Oligomerization Domain Containing 2 Characterization and Function during Mycobacterium tuberculosis Infection of Human Macrophages

Brooks, Michelle Nichole 26 September 2011 (has links)
No description available.
315

Macrophage Microbicidal Activity is Enhanced by Stressor-Exposure

Allen, Rebecca G. 06 January 2012 (has links)
No description available.
316

Prevention of Chronic Inflammation by Targeting Macrophage Integrin aDb2

Forgey, Cady 01 December 2020 (has links)
Macrophage integrin aDb2 promotes macrophage retention and accumulation within inflamed tissue, a key event in development of chronic inflammation. Recently, the P5 peptide was identified as a specific inhibitor for integrin aDb2 interaction with 2-(ω-carboxyethyl) pyrole (CEP), a ligand at inflammatory sites. This thesis aims to identify integrin aD I-domain amino acids involved in binding P5 peptide and likewise to CEP. We propose that non-conserved, basic amino acids of the integrin aDb2 I-domain are responsible for binding to P5 peptide and likewise to CEP. Eight amino acids were analyzed by generating six mutant aD I-domains: K180[A], R189[Q], K205[L], HHK223-225[NIT], K233[A], and K246[A]. Mutagenic constructs were created using PCR site-directed mutagenesis, then transformed into E.coli BL21 cells for IPTG-induced protein expression. Of the 6 mutant I-domains analyzed, amino acid K246 was critical in binding to P5 peptide and CEP through ForteBio Protein-Protein Assay, as well as to CEP by cell adhesion assay.
317

Macrophage SR-BI and Atherosclerosis

Tedesco, Vivienne C. 04 1900 (has links)
<p> The Scavenger Receptor, Class B, Type I (SR-BI) is an integral membrane protein whose expression in the liver is critical to reverse cholesterol transport by mediating the selective uptake of HDL-derived cholesterol. SR-BI is expressed in a variety of tissues including bone marrow derived macrophages and foam cells in atherosclerotic lesions. We have explored the effect of eliminating SR-BI in leukocytes on advanced stages of atherosclerotic plaque development in apoE KO mice. We observed statistically significant cardiomegaly as a result of the elimination of SR-BI in bone marrow derived cells compared to controls (P=0.02). We report that the elimination of SR-BI in bone marrow derived cells in apoE KO mice induced to undergo atherosclerosis by feeding a high fat diet for four weeks leads to no significant difference in cross-sectional atherosclerotic plaque area at the aortic root (4.9±0.9x10^4 μm^2 when SR-BI-/- apoE-/- --> apoE-/- [n=9] and 5.5±0.9x10^4 μm^2 when SR-BI +/+ apoE-/- --> apoE -/- [n=12], P=0.68) or plaque volume through the aortic sinus (1.8±0.3x 10^7 μm^3 when SR-BI-/- apoE-/- --> apoE-/- [n=9] and 1.9±0.3x10^7 μm^3 when SR-BI +/+ apoE-/- --> apoE -/- [n=12], P=0.69). We demonstrate that macrophage SR-BI protein expression can be decreased by cholesterol associated with lipoproteins. Furthermore, we report that in Raw 264.7 macrophage-like cells the expression of SR-BI can also decrease in response to glucosamine treatment. The expression of SR-BI is decreased significantly in cells overexpressing SR-BI (1d1A[mSR-BI] cells [P=0.003]) due to treatment with glucosamine with increased protein mobility. We support this finding by demonstrating that this difference may be the result of altered glycosylation.</p> / Thesis / Master of Science (MSc)
318

The Role of Toll-Like Receptor Agonist Treatment on Salmonella Infection in Macrophages

Wong, Christine Elizabeth 09 1900 (has links)
Salmonella is a Gram-negative intracellular pathogen that causes gastroenteritis and typhoid fever in humans. Salmonella can survive and replicate within host cells and has adapted several mechanisms to evade host immune defenses. The innate immune system plays an important role as a first-line of defense against pathogens such as Salmonella, and is mediated in part by toll-like receptors (TLRs). TLRs recognize fundamental components of pathogenic microorganisms and activation of TLRs leads to downstream signaling cascades eventually resulting in the expression of pro-inflammatory cytokines (4) and also has a role in activating adaptive immunity through presentation of antigens to lymphocytes (86). There are several lines of evidence that suggest that TLR activation may have therapeutic potential in therapies against infectious disease and several TLR agonists have been shown to protect against both bacterial and viral infection in mice (7; 8; 38; 66; 75; 84; 89; 121). To understand how TLR-agonist treatment of host cells affects Salmonella pathogenesis, RAW 264.7 murine macrophages were treated with the TLR agonists liposaccharide (LPS), poly(I:C), peptidoglycan, and CpG-ODN. Treatment of macrophages with all TLR-agonists results in increased phagocytosis of Salmonella compared to control-treated macrophages. These increases in phagocytic activity, however, do not enhance macrophage anti-microbial activity, since Salmonella infection of TLR-treated macrophages results in increased intracellular replication compared to control-treated cells. Infection with Salmonella mutants indicates that increased intracellular replication of Salmonella in TLR-treated macrophages is dependent on a functional SPI-2 type III secretion system. This also indicates that there was not a generalized defect in macrophage anti-bacterial function. These data exemplify how interactions between macrophage defense mechanisms and bacterial virulence factors can result in evasion of the innate immune response. Studying how TLR-agonist treatment affects Salmonella pathogenesis will give us a better understanding of the host-pathogen relationship and may provide insight into novel strategies to fight intracellular microorganisms. / Thesis / Master of Science (MSc)
319

Abscisic acid ameliorates glucose tolerance and obesity-induced inflammation

Guri, Amir Joseph 28 November 2007 (has links)
Obesity is a disease characterized by chronic inflammation and the progressive loss in systemic insulin sensitivity. One of the more effective medications in the treatment of insulin resistance have been the thiazolidinediones (TZDs), which act through the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma ). Due to the many side-effects of TZDs, our laboratory sought out a natural phytochemical, abscisic acid (ABA), with chemical similarities to TZDs. Our first study demonstrated that ABA activates PPARgamma in vitro and significantly ameliorates white adipose tissue (WAT) inflammation and glucose tolerance in db/db mice. We next further examined the effect of ABA on the phenotype of adipose tissue macrophages (ATMs). In doing so, we discovered two separate ATM populations which differed in their expression of the macrophage surface glycoprotein and maturation marker F4/80 (F4/80hi vs F4/80lo). Dietary ABA-supplementation significantly reduced F4/80hiCCR2+ ATMs and had no effect on the F4/80lo population. Utilizing a tissue-specific knockout generated through Cre-lox recombination, we were able to determine that this effect was dependent on PPARgamma in immune cells. To further characterize the differences between the ATM subsets that were affected by ABA, we performed a multi-organ assessment (i.e., WAT, skeletal muscle and liver) of the effect of diet-induced obesity on the phenotype of infiltrating macrophages and T cells into metabolic organs. Based on our new data, we formulated a model by which F4/80hiCCR2hi ATMs infiltrate WAT and ultimately induce a CD11c+ pro-inflammatory phenotype in the resident F4/80loCCR2lo subset. Ultimately, our findings provide evidence that ABA has potential as an alternative preventive intervention, expound the role of PPARgamma in immune cells and, in general, expand our knowledge concerning the immunopathogenesis of obesity-induced insulin resistance. / Ph. D.
320

Non-resolving pro-inflammatory macrophage polarization by super-low doses of bacterial endotoxin

Rahtes, Allison Anne 10 January 2020 (has links)
Subclinical endotoxemia (low levels of circulating bacterial endotoxin) has been observed in patients suffering from chronic inflammatory diseases such as atherosclerosis, diabetes, and obesity. However, the link between this condition and chronic inflammation is poorly understood. Previous work from our lab has shown that chronic exposure to super-low doses of bacterial endotoxin (LPS) aggravates atherosclerosis resulting in increased plaque size and instability in a macrophage-dependent manner in a mouse model of atherosclerosis. Further, we showed that super-low dose LPS (SLD-LPS) treatment was able to inhibit lysosomal fusion in immortalized macrophages. However, this was done under more acute treatment conditions. The aim of this project was to examine the molecular mechanisms by which chronic SLD-LPS may polarize macrophages to a non-resolving pro-inflammatory state consistent with chronic inflammation. This was carried out in two projects, the first a more broad phenotypic paper showing the disruption in homeostasis by chronic SLD-LPS in immortalized macrophages, while the second uses primary bone marrow-derived mouse macrophages to identify specific molecular signaling pathways used by chronic SLD-LPS. Here we show that chronic SLD-LPS led to the novel upregulation of pro-inflammatory mediators p62 and ccl2 with simultaneous downregulation of homeostatic mediators Nrf2 and slc40a1 in immortalized wild-type mouse macrophages. Further we showed this effect was reversed using the homeostatic restorative agent sodium phenylbutyrate (4-PBA), a newly reported activity for this reagent in mouse macrophages. This indicated that a disruption in homeostasis, possibly involving autophagy, may be responsible for the non-resolving pro-inflammatory polarization of macrophages. Therefore, in our second project, we further explored the effect of chronic SLD-LPS treatment on the homeostatic arm of the response by focusing on the Nrf2 inhibitor Keap1. Here we show that chronic SLD-LPS results in an accumulation of Keap1 in mouse bone marrow-derived macrophages, an effect specific to chronic SLD-LPS, as high doses of LPS failed to induce Keap1. We suggest that this effect may be related to a disruption in lysosomal fusion as evidenced by accumulation of autophagy flux markers MLKL and p62. Further, we show that these effects are dependent on the non-traditional TLR4 adaptor TRAM, suggesting an alternative dose-dependent signaling pathway for LPS. Together this work identifies novel signaling mechanisms involved in non-resolving pro-inflammatory polarization of murine macrophages, providing new insight behind how chronic super-low dose LPS exposure may lead to chronic inflammation. / Doctor of Philosophy / Inflammation is the body's natural response to injury or insult and can be beneficial in certain contexts such as pathogen clearance. However, left un-checked, chronic inflammation can exacerbate or even lead to disease pathology, such as is the case with modern diseases such as atherosclerosis, obesity, diabetes, etc. Despite the high prevalence of these diseases, effective treatments and therapies are still lacking. Recently it was discovered that many patients suffering from chronic inflammatory diseases had low levels bacterial endotoxin (LPS) in their circulation, a condition referred to as subclinical endotoxemia. However, possible links between this condition and chronic inflammatory disease remain poorly understood. Using a mouse model of atherosclerosis, previous research from our lab showed that persistent exposure to super-low doses of bacterial endotoxin (similar to those observed in humans) lead to aggravated atherosclerosis with both increased plaque size and instability. Further, we showed that this effect was primarily mediated by pro-inflammatory polarized immune cells called macrophages, but the molecular mechanism behind this polarization is still unclear. Further research into these molecular mechanisms may provide better targets for the development of future chronic inflammatory disease treatments. Here using a combination of mouse cell line and primary cell cultures, we discuss how chronic exposure to super-low doses of bacterial endotoxin leads to the chronic non-resolving pro-inflammatory polarization of macrophage immune cells, with particular emphasis on the distinct molecular signaling mechanisms induced by chronic super-low dose LPS.

Page generated in 0.0325 seconds