• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 3
  • 2
  • Tagged with
  • 13
  • 7
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Matériaux mésoporeux pour l'isolation thermique / Thermal insulating mesoporous materials

Belmoujahid, Yassine 23 April 2014 (has links)
Nous avons étudié la conductivité thermique de particules de silice mésoporeuse organisée de type SBA-15 de morphologie bâtonnet et présentant trois états d’agrégation : non agrégées (morphologie A), agrégées en macrostructures fibreuses homogènes en taille (morphologie B) et agrégées en macrostructures fibreuses hétérogènes en taille (morphologie C). Ces trois types de morphologie ont subi un traitement thermique post-synthèse à des températures variables allant de 150 °C jusqu’à 900 °C. Les mesures de conductivité thermique ont été effectuées sur ces trois morphologies. Il s’est avéré que la morphologie B est la plus isolante par rapport aux deux autres morphologies. De plus, le traitement thermique post-synthèse à 300 °C est optimal pour avoir des caractéristiques texturales très importantes, ainsi qu’une meilleure performance en isolation thermique (23 mW.m-1.K-1 pour la poudre, 30 mW.m-1.K-1 pour le monolithe). Dans le cas de la morphologie B, nous avons modifié l’interconnexion entre les mésopores cylindriques réguliers qui caractérisent la SBA-15; soit la présence ou non de microporosité, voire de mésoporosité, en variant la température de l’étape de synthèse dite de vieillissement de 36 à 130 °C. Il apparait que la température de vieillissement à 130 °C améliore la performance d’isolation thermique (22 mW.m-1.K-1). Des pastilles de la SBA-15 de morphologie B en été élaborées par ajout de liants de deux types : organique avec la carboxyméthylcellulose, et inorganique avec une silice colloïdale. En ajoutant ces deux types de liants, les propriétés mécaniques sont un peu améliorées, cependant la performance d’isolation thermique diminue notablement. / We have studied the thermal conductivity of rod-shaped particles of ordered mesoporous silica (OMS) SBA-15 type with three states of aggregation: non aggregated (morphology A), aggregated in fibrous macrostructures homogeneous in size (morphology B) and aggregated in fibrous macrostructures heterogeneous in size (morphology C). These three types of morphology were heat treated at temperatures from 150 °C to 900 °C. The thermal conductivity measurements were performed on these three morphologies in powder form or monoliths (assembly of particles or aggregates). It has been found that the morphology B is more insulating compared to the two other morphologies. In addition, the post-synthesis heat treatment at 300 °C is optimum for obtaining important textural characteristics (specific surface area and pore volume), and a better thermal insulation performance (23 mW.m-1 K-1. for the powder and 30 mW.m-1.K-1 for the monolith). For morphology B, we have changed the interconnection between regular cylindrical mesopores of SBA-15 by varying the synthesis temperature during the aging step from 36 to 130 °C. It appears that the aging temperature at 130 °C, where the connection between the cylindrical mesopores is realized by mesopores, improves the performance of thermal insulation (22 mW.m-1.K-1). Monoliths of OMS SBA-15 type with morphology B were prepared by adding two kinds of binders: organic with carboxymethylcellulose (CMC), and inorganic with a colloidal silica (Ludox AS40). By adding these two kinds of binders, the mechanical properties of the SBA-15 with morphology B are improved, but the thermal insulation performance decreases considerably.
12

Elaboration par voie sol-gel de supports macroporeux à base de verre bioactif pour l'ingénierie tissulaire. Caractérisation par micro-PIXE de leurs réactivités in vitro et in vivo

Lacroix, Joséphine 16 July 2013 (has links) (PDF)
Les verres bioactifs sont des matériaux particulièrement intéressants en régénération osseuse du fait de leur capacité à stimuler les cellules responsables de la croissance osseuse par les espèces qu'ils relarguent lors de leur dissolution et pour leur capacité à se lier à l'os. Au-delà de leur rôle comme matériau de comblement de défauts osseux, ils pourraient servir de support à la croissance en laboratoire de véritables greffons osseux cultivés à l'aide de seulement quelques cellules d'un patient. Afin d'être efficace, ce support doit posséder une architecture macroporeuse interconnectée pour permettre l'invasion cellulaire ainsi que la vascularisation, nécessaire à la survie des cellules. Ce travail de thèse a pour objectif la réalisation d'un tel support par l'ajout d'une étape de moussage au procédé sol-gel. Ce procédé a été utilisé pour la synthèse de matériaux aux porosités différentes permettant de déterminer une porosité plus prometteuse pour des essais in vivo qui ont montré l'invasion possible de cette mousse par des cellules osseuses. Ce procédé a de plus été rendu plus sûr par la mise au point d'une voie de synthèse alternative dans laquelle l'acide nécessaire au procédé de moussage, mais toxique, a été remplacé avec succès. Cette voie alternative a de plus permis l'organisation de la mésoporosité de la mousse. L'incorporation d'un élément d'intérêt biologique, le strontium, a été réalisé et son influence sur les propriétés et la réactivité du verre a été étudiée. Enfin, une voie de synthèse de nouveaux matériaux composites a été proposée : la grande bioactivité des verres bioactifs est conservée tout en ayant des propriétés mécaniques supérieures grâce à l'utilisation de la gélatine comme phase organique.
13

Propriétés mécaniques, structure interne et mécanismes de transfert de l'oxygène dans le liège / Mechanical properties, internal structure and transport mechanism of oxygen in cork

Lagorce-Tachon, Aurélie 10 December 2015 (has links)
Lors de la conservation des vins en bouteilles, des réactions d’oxydation prématurées peuvent se produire et les propriétés barrières à l’oxygène de l’obturateur en liège sont souvent mises en cause. À l’heure actuelle, aucune étude n’a permis de déterminer la structure interne du liège ou l’effet de l’hydratation sur ses propriétés mécaniques. Quant aux propriétés barrières à l’oxygène, l’étape limitante au transfert reste indéterminée ainsi que l’effet de la compression et le rôle de l’interface verre/liège. L’étude de la structure interne du liège par imagerie a permis de visualiser la macroporosité du matériau et de conclure que pour les qualités de liège étudiées, les lenticelles ne sont pas interconnectées. La caractérisation des propriétés mécaniques du liège a montré que le module de Young n’était pas affecté pour une humidité relative < 50 %. En milieu plus humide, ce dernier diminue à cause de la formation de clusters de molécules d’eau entre les chaines de polymères constituants les parois cellulaires. En comparant le comportement du liège brut avec celui d’autres obturateurs, un effet de la taille des particules de liège et du ratio liège/additifs utilisés dans ces obturateurs, a également été mis en évidence. Au regard du mécanisme de transfert de gaz, les mécanismes en jeu et en particulier l’étape limitante ont été clairement déterminés : il s’agit de la diffusion au travers des parois cellulaires selon la loi de Fick. L’effet de la compression du bouchon ne modifie pas significativement le transfert d’oxygène tandis que le rôle de l’interface verre/liège semble gouverner les transferts de gaz de l’extérieur vers l’intérieur de la bouteille. / During the post bottling aging, premature oxidation reactions could occur and the oxygen barrier properties of the stopper are often pointed out. Nowadays, the internal structure of this material or the effect of hydration on its mechanical properties are still undetermined. Moreover, regarding the barrier properties, the limiting step of the oxygen transfer was not yet fully understood as well as the effect of compression or the role of the glass/cork interface in a bottleneck. The study of the internal structure of cork stopper allowed us to visualize the macroporosity of the material and conclude that there is no interconnectivity between lenticels, for the two qualities studied. The effect of hydration on the mechanical properties of cork was also investigated. The results shown that the rigidity of the material was not significantly affected for relative humidity < 50 %. Above this hydration level, the Young’s moduli decrease due to clusters formation of water molecules. Comparing the natural cork behavior to other stoppers, an effect of the particle size and the ratio cork/additives used in these stoppers was also highlighted. Regarding the transport mechanism of gas through cork, the limiting step was clearly determined: it’s the diffusion through the cell wall according to a Fickian mechanism. The compression of the stopper does not have a significant impact on the effective diffusion coefficient of oxygen. However, the role of the glass/cork interface is really important and seems to govern the gas transfer from the surrounding atmosphere into the bottle.

Page generated in 0.0948 seconds