• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 90
  • 23
  • 14
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 182
  • 182
  • 43
  • 36
  • 32
  • 30
  • 27
  • 25
  • 22
  • 20
  • 18
  • 17
  • 17
  • 17
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Análise da solidificação de ligas de magnésio para aplicação na fabricação de motores

Figueiredo, Arlan Pacheco January 2008 (has links)
Magnésio e suas ligas têm adquirido importância cada vez mais significativa como material estrutural de peso leve despertando um singular interesse pela indústria uma vez que oferece a melhor relação peso/resistência entre os metais. Os campos mais conhecidos de sua aplicação consistem na construção de veículos, na aeronáutica, manipulação industrial (robôs, automatização) e tecnologia de comunicação. Em particular, a indústria automobilística tem crescentemente ampliado a utilização de ligas de magnésio na produção de peças que vão desde caixas de câmbio até aros de rodas. As principais razões para este desenvolvimento são: mudanças na legislação ambiental, as exigências de cliente, e objetivos corporativos que requerem veículos mais leves diminuindo o consumo de combustível. O uso do magnésio para aplicações estruturais em altas temperaturas é limitado devido a sua baixa resistência à fluência. Isso se deve ao enfraquecimento do contorno de grão a partir da precipitação descontínua da fase b-Mg17Al12 de baixo ponto de fusão. Dentre as ligas de magnésio desenvolvidas para resistência à fluência, as ligas do sistema Mg-Al-RE-Ca oferecem ótimo desempenho com resultados similares à liga de alumínio ADC12. Muitos trabalhos sobre o sistema de ligas Mg-Al-RE-Ca foram realizados visando compreender a relação entre microestruturas e propriedades mecânicas. Entretanto, poucos estudos relacionaram a influência das variáveis de solidificação na formação das microestruturas. O presente trabalho tem como objetivo realizar um estudo em uma liga Mg-4%Al-3%La-1%Ca analisando a influência das variáveis térmicas tais como taxas de resfriamento, velocidade da isoterma liquidus e gradientes de temperatura, na formação de estruturas, na transição colunarequiaxial e espaçamento dendrítico durante o processo de solidificação. A previsão das distintas estruturas, tais como zona colunar e equiaxial é de grande interesse para avaliação e projeção das propriedades mecânicas dos fundidos. Dessa forma, a liga estudada foi submetida à solidificação unidirecional vertical ascendente e análise térmica. Foram realizadas análises metalográficas nos lingotes solidificados. Os resultados colaboram para uma melhor compreensão do fenômeno de solidificação da liga e serve como ferramenta no desenvolvimento de modelos de previsões de formação de micro e macroestruturas que influenciam diretamente nas propriedades mecânicas. / Due to their superior weight/resistance relation, magnesium and its alloys have been acquiring a great deal of importance in the modern industry, specially as lightweight structural materials in the fields of vehicle construction, aeronautics, industrial robotics, automation, and communication technologies. In particular, the automotive industry has been increasingly expanding the use of magnesium alloys in the production of auto-parts, ranging from gearbox housings to steering wheels. The main reasons for this developments are changes in environmental legislations, new customer requirements, and corporate policies regarding fuel consumption and weight/power relations. The use of magnesium alloys for structural applications at high temperatures is limited due to the precipitation of the discontinuous phase b-Mg17Al12, which in fact, weakens the grain boundary during service resulting in a low creep resistance. Among the magnesium alloys developed for creep resistance, the alloys of the system Al-Mg-RE-Ca offer optimum performance with results similar to the ADC12 aluminum alloy. Many studies on the Al-Mg-RE-Ca system alloys were aimed to understand the relationship between microstructure and mechanical properties. However, few studies undertake the influence of the solidification variables in the microstructure formation. This work aims to study the influence of some thermal variables such as temperature gradients, solidification and growth tip rate on the formation of microstructures, the columnar/equiaxial transition and dendrite arm spacing, during the solidification process of a Mg-4%Al-3%La- 1%Ca alloy. The prediction of the different structures, such as the columnar and the equiaxial regions is of great interest for the assessment and projection of the mechanical properties of the casts. Therefore, the alloy studied in this work were submitted to thermal analysis during an unidirectional vertical ascending solidification, as well as optical and scanning electron microscopy characterization. The results contribute to a better understanding of the solidification phenomena of the magnesium alloys, as well as a tool in the development of numerical models for the prediction of structures which directly influence the mechanical properties of the parts.
142

Kinetics Of Pressureless Infiltration Of Al-Mg Alloys Into Al2O3 Preforms : A Non-Uniform Capillary Model

Patro, Debdutt 12 1900 (has links)
Al-Mg alloys spontaneously infiltrate into porous ceramic preform in a nitrogenous atmosphere above 750 °C with Mg either pre-alloyed or introduced at the interface to initiate the process. The governing process variables are temperature, alloy composition, atmosphere and particle size of the porous preform. The present study investigates the flow kinetics of Al-Mg melts into porous Al2O3 preforms as a function of particle size of the preform from the standpoint of a physical phenomena fluid flow through a non-uniform capillary. Pressureless infiltration involves two major stages: (a) initiation associated with an incubation period and, (b) continuation where the melt infiltrates the preform. Long (~1 hr) and irreproducible incubation periods are typically observed in the Al- Mg/Al2O3 system when the samples are slowly heated in N2 atmosphere. Such lengthy periods prior to infiltration also lead to excessive Mg loss from the system. In order to accurately measure infiltration rates during the continuation stage, the incubation period was minimized by upquenching samples in air under self-sealing conditions. Interrupted experiments reveal that infiltration occurs within 5 mins. Different phenomena are expected to dictate the capillary rise kinetics through the porous ceramic post-incubation (more specifically, retard the melt movement) (a) triple-point ridging of the melt meniscus on the alumina surface (meniscus pinning) (b) interfacial reaction limited wetting and infiltration (c) pore size and distribution of the porous ceramic (d) melt (Al-Mg) / atmosphere (N2) reaction to form products inside the pore space (decrease in permeability) (e) time-dependent loss of Mg from the system (time-dependent contact angle) Some of the above phenomena viz., fluid flow inside the porous medium and chemical reaction of the melt with the reinforcement are invariably coupled in a complex manner. The contribution of each phenomenon to the kinetics of infiltration (a) and (e) was investigated separately. Triple-line ridging Al sessile drops on alumina substrate spread 4-5 orders of magnitude slower than that predicted by hydrodynamic equilibrium. The melt is pinned by ridges leading to spreading rates of 0.4-4 mm/hr in contrast to viscous drag controlled spreading rates of 1-10 mm/sec. In order to detect ridging in the Al-Mg/Al2O3 reactive couple, uniform Al2O3 capillaries were infiltrated. Experiments were conducted under sealed configuration with metal on both sides of the capillary and Mg turnings at the interface. The uniform capillary itself was placed inside an alumina preform and the assembly upquenched to 800-900 °C to minimize evaporative loss of Mg. Examination of the inner walls of the capillary after leaching away the infiltrated metal shows rough, granular features on the polycrystalline Al2O3 surface. No continuous ridges were seen. EDS of the granular phase suggested stoichiometry of spinel, MgAl2O4, formed as a result of the reaction between the melt and the capillary. From interrupted experiments the average infiltration rate inside the uniform capillary was calculated to be in the ballpark range of 2-6 µm/sec (which is a lower limit to the meniscus velocity), an order of magnitude faster than the spreading rates observed during triple-line ridging (0.1 – 1 µm/sec) indicating that the melt front pinning was not the operative mechanism for influencing infiltration kinetics. Pore size distribution of porous medium Additionally, infiltration was found to be faster in uniform channels (fractures in a preform, annular spaces and aligned pores in freeze-cast preforms) compared to the randomly packed bed itself. The effect of pore size on infiltration kinetics was studied by varying the particle size of the packed bed. Experiments were conducted for two systems (a) non-reactive liquid polyethylene glycol PEG 600 (b) reactive Al-Mg melts into packed alumina beds as a function of particle size and temperature. The PEG 600 / Al2O3 ‘model’ system was used to benchmark the effect of pore size and distribution of the particle bed on flow kinetics from a purely physical standpoint. Typically, a Washburn type of ‘parabolic’ kinetics was observed for the non-reactive couple and the ‘effective’ hydrodynamic radius, reff was extracted. (For a uniform capillary, reff and the physical radius of the capillary are the same). Surprisingly, the ‘Washburn’ radius was found to be 1-2 orders of magnitude smaller than the average pore size and even smaller than the minimum average pore size of the compact. The ‘Washburn’ radii for infiltration of Al-Mg melts was a further order of magnitude smaller than the corresponding values for infiltration of non-reactive PEG 600 through the same packed beds. Non-uniform capillary model To predict the infiltration kinetics through porous media, a sinusoidal capillary model was developed based on the pore size distribution. The input parameters for the model were the average pore neck size and average pore bulge size, which were extracted from the experimentally measured pore size distribution. The flow was assumed to be quasi-steady state and laminar. Hagen-Poiseuille’s equation was employed to calculate the total pressure drop, which was equated with the instantaneous pressure drop across the meniscus. The meniscus velocity within the non-uniform capillary was solved numerically based on the instantaneous pressure drop. The infiltration profile for the sinusoidal capillary displayed jumps associated rise in the narrow segments of the profile while the rise through the broad segment was considerably slow. The overall infiltration profile could be fitted by a parabolic Washburn-type equation. The ‘effective’ hydrodynamic radius of such a sinusoidal capillary was found to be 2-3 orders of magnitude smaller than the average capillary size and even smaller than the narrowest opening of the sinusoidal capillary. The overall kinetics was limited by flow through the broad segment of the profile where the capillary driving force is the lowest coupled with a large viscous retarding force due to the narrow feeding segment thereby leading to extremely slow flow rates. The calculated ‘effective’ radius of the sinusoidal capillary (reff = 0.03 µm) based on the pore size distribution of the 25-37 µm (1.4-10.8 µm) packed bed was similar to the experimentally observed ‘effective’ radius for flow in the non-reactive couple (reff = 0.06 µm) implying good agreement between experiments and modeling. The model was extended for the case of pressure infiltration of Al melts into SiC & TiC compacts reported in the literature, under conditions where chemical reactions are negligible. A good agreement to within a factor of 4 between the observed kinetics and the ones predicted by the current model is observed. In order to understand the origin of this ‘unphysical’ radius dictating capillary rise, the physics of flow through a stepped capillary was analysed. The kinetics of flow through the wide segment could be expressed by an ‘effective’ drodynamic radius r 4min based on geometrical parameters of the stepped capillary as: reff= r3max (Wetting situation) where rminand rmax are the radii of the narrow and broad segments of the capillary. The ‘effective’ radius from the above equation matched well with the numerically derived ‘effective’ radius for flow through the stepped capillary. A r 2 similar expression for flow under applied pressure was derived as: reff= min rmax (non- wetting situation) which is strictly correct for large values of applied pressure. Chemical reactions influencing infiltration kinetics: Upquenched samples (time-dependent contact angle due to Mg loss) The previous investigation of fluid flow in porous media from a purely physical standpoint reveals the dominant role of the pore size and distribution in the porous medium in controlling infiltration kinetics. This however, is accurate only if chemical factors are minimized. In case of the upquenched experiments for the Al-Mg/Al2O3 system, the ‘effective’ radius was determined to be an order of magnitude smaller than that for the PEG 600/Al2O3 couple implying additional chemical factors influencing flow kinetics in this reactive system. Experiments with Mg turnings mixed with the powder bed shows faster infiltration compared to the ones where the entire Mg was placed at the interface showing that local availability of Mg was responsible for slower infiltration kinetics. Diminishing Mg at the melt front, leads to increase of surface tension and increase in contact angle. This was modeled by incorporating a kinetics (time-dependent) contact angle into the sinusoidal capillary model developed for non-reactive infiltration. The infiltration kinetics was found to be retarded in the case of a kinetic contact angle. Thus, both flow retardation through a packed bed and time-dependent variations of contact angle due to Mg loss from the system are responsible for slow pressureless infiltration kinetics of Al-Mg melts inside Al2O3 preforms. The infiltration kinetics predicted by the sinusoidal capillary model thus defines an upper envelope to the rate of infiltration and subsequent composite formation for such a process governed by fluid flow; all other factors if present in effect, retard the kinetics further. Samples processed in N2 atmosphere (reduced permeability due to AlN formation) The more practical case of composite fabrication (PRIMEXTM process) by pressureless infiltration of Al-Mg melts in a flowing N2 containing atmosphere was also examined. The kinetics of infiltration of Al-Mg melts in a flowing N2-H2 atmosphere (pO2 ~ 10-20atm) for different particle sizes of the packed bed was investigated. A large scatter in the infiltrated heights was observed and the absolute infiltration rates could not be established. Moreover, incubation periods were seen to range from 1-2 hours for different particle sizes. Post-incubation, the infiltration kinetics for a wide range of particle sizes was found to be approximately an order of magnitude slower than that for the upquenched samples. Microstructural investigations of the etched samples revealed significant AlN formation at the start of the composite near the preform/billet interface. This reduced the cross-sectional area available for melt flow and possibly led to long incubation periods encountered in the process. AlN formation was also detected in the matrix on the particle surfaces as well as in the interior of the matrix. This reduced the permeability of the compact and increased the hydrodynamic resistance for flow through the porous compact leading to slower infiltration kinetics. Thus both AlN formation in the matrix and Mg loss from the melt retard capillary flow of the melt through the porous ceramic over and above the intrinsic hydrodynamic resistance for flow through the packed bed. Role of atmosphere on the pressureless infiltration process The role of atmosphere in promoting the pressureless infiltration process was examined by using different processing atmospheres such as vacuum, N2-H2 and Ar and combinations thereof. It is known that the pressureless infiltration of Al melts into porous Al2O3 preforms requires both N2 and a critical level of Mg in the system. Samples heated under vacuum and Ar to 900 °C under open conditions did not infiltrate. Rather these showed discoloration related to the formation of MgAl2O4 on the particle surface due to reduction of Al2O3 by Mg vapour. Moreover, samples heated in Ar upto 500 °C followed by heating up in N2-H2 till 900 °C did not infiltrate indicating irreversible changes. Interestingly enough, if the samples were heated in vacuum upto 700 °C followed by N2-H2 at 900 °C, infiltration was observed. Dewetted regions of the compact were seen too adjacent to the preform-billet interface. This indicated a minimum critical partial pressure of N2, which promotes infiltration. From an analysis of the different interfacial energies and their dependence on atmosphere, it was concluded that either an increase in the solid-vapour interfacial energy (~ 10%) or a decrease in the solid-liquid interfacial energy (~ 10%) would lead to a decrease in the contact angle, θ, by 10°, large enough to ensure wettability and infiltration in certain atmospheres. It was also established that Mg infiltrates into porous Al2O3 both in N2-H2 as well as Ar under sealed conditions. So the presence of a minimum partial pressure of N2 favouring wettability was specific to the Al-Mg/Al2O3 system. (pl see the original document for formulas)
143

Superplastic Deformation Behaviour Of AZ31 Magnesium Alloy

Panicker, Radhakrishna M R 08 1900 (has links)
Superplastic deformation behaviour of AZ31 magnesium alloy having initial grain sizes 8, 11 and 17μm alloy was investigated at 673 K with initial strain rates ranging from 1x10-2 to 1x10-4 s-1. Mechanical data on fine grained AZ31 alloy with grain sizes 8 and 11 μm indicated a transition in deformation mechanisms. The strain rate sensitivity, m ~ 0.5 at low strain rates and m ~ 0.2 at high strain rates which suggest GBS and dislocation slip as the corresponding deformation mechanism. For coarse grained alloy having grain size 17 μm, m < 0.4 at low strain rates and ~ 0.2 at high strain rates, suggesting dislocation slip as the deformation mechanism. A superplastic maximum elongation of ~ 475% was observed for 8 μm alloy at low rate of deformation. At high strain rates, the deformation was non-superplastic for fine and coarse grained alloys. The contribution of GBS to total strain, ξ in the low strain rate regime was evaluated to be 50 – 60%, for both low and high elongation. EBSD studies indicated the maintenance of high fraction of high angle boundaries up to true strain of ~ 0.88 and a reduction in texture intensity. These observations show GBS as the dominant deformation mechanism for fine grained alloy. At higher strain rate, ξ was estimated to be 30%. Fraction of high angle boundaries was reduced and [0001] direction of grains was found to be rotated towards the tensile direction, suggesting dislocation slip. Based on mechanical data, flow localization and cavitation studies; the failure of the material during high rates of deformation was mainly due to flow localization. Extensive cavitation along with more uniform flow at a lower strain rate regime suggests the failure due to the cavity interlinkage and coalescence. The present GBS data are consistent with the previous relevant data in fine grained Mg based alloys in the low strain rate regime. The GBS data obtained in the dislocation regime in the present study are also in agreement with that of the previous investigations in fine grained Mg alloys.
144

Dynamic stress analysis of composite structures under elastic wave load : particulate reinforced metal matrix composites

Aghachi, Izendu Emenike Alu. January 2012 (has links)
D. Tech. Mechanical Engineering. / Discusses the main objective of this study was to extend the hybrid method developed by Paskaramoorthy, et al (1988). This objective was to study the effect of elastic wave on any particulate reinforced metal matrix composite (PRMMC). The specific objectives were: to compare the effect of plane wave and shear vertical wave on a particular particulate reinforced metal matrix composite (PRMMC)-Mg/TiC, using analytical method ; to use the extended hybrid method to determine the effect of particle size and single interface layer on Mg/TiC.
145

Μηχανική συμπεριφορά προηγμένων αεροπορικών κραμάτων μαγνησίου

Χάμος, Απόστολος 28 April 2009 (has links)
Διαχρονικά, ένας από τους βασικότερους στόχους της αεροπορικής βιομηχανίας είναι η μείωση του βάρους των αεροχημάτων προκειμένου να επιτευχθεί αύξηση του οφέλιμου φορτίου και παράλληλα μείωση των περιβαλλοντικών επιπτώσεων μέσω της μείωσης εκπομπής ρύπων. Στο πλαίσιο αυτό, η αξιοποίηση ελαφρύτερων μεταλλικών υλικών, όπως είναι για παράδειγμα τα κράματα μαγνησίου, μπορεί να αποτελέσει σημαντική τεχνολογική καινοτομία. Παρολ’ αυτά, μέχρι σήμερα η χρήση των κραμάτων μαγνησίου, και ειδικότερα των ελατών προιόντων, είναι εξαιρετικά περιορισμένη κυρίως λόγω της υψηλής διαβρωτικότητάς τους και δευτερευόντως λόγω της υποδεέστερης συμπεριφοράς ανοχής σε βλάβη σε σύγκριση με τα ευρέως χρησιμοποιούμενα κράματα αλουμινίου και τιτανίου. Στην παρούσα εργασία πραγματοποιείται μια συστηματική μελέτη της μηχανικής συμπεριφοράς δύο προηγμένων ελατών κραμάτων μαγνησίου της οικογένειας ΑΖ, συγκεκριμένα του ΑΖ31 και του ΑΖ61, λαμβάνοντας υπόψη τους μηχανισμούς παραμόρφωσης, συσσώρευσης βλάβης και αστοχίας που λαμβάνουν χώρα στη μικροδομή των υλικών. Ιδιαίτερη βαρύτητα δίνεται στη συμπεριφορά κόπωσης του κράματος ΑΖ31. Επιπλέον, μελετάται η επίδραση της προηγηθείσας βλάβης διάβρωσης στη μηχανική συμπεριφορά των υλικών. Για την αξιολόγηση της μηχανικής επίδοσης των εν λόγω κραμάτων πραγματοποιήθηκε εκτενής πειραματική μελέτη η οποία περιελάμβανε το χαρακτηρισμό της μικροδομής των υλικών, μηχανικές δοκιμές εφελκυσμού, κόπωσης και διάδοσης ρωγμής κόπωσης τόσο σε αδιάβρωτα όσο και σε προ-διαβρωμένα δοκίμια και ακολούθησε μεταλλογραφική ανάλυση και μελέτη των επιφανειών θραύσης των αντίστοιχων δοκιμίων των πειραματικών δοκιμών. Τα αποτελέσματα των δοκιμών εφελκυσμού έδειξαν ανισοτροπία των υλικών στις διευθύνσεις έλασης και κάθετα σε αυτήν. Από τη μεταλλογραφική ανάλυση που επακολούθησε προέκυψε ότι η παρατηρούμενη ανισοτροπία έχει αφετηρία τη γωνιακή διασπορά των πόλων των επιπέδων βάσης του κρυσταλλικού πλέγματος του υλικού. Επιπλέον, από το μεταλλογραφικό έλεγχο παρατηρήθηκε εμφανής διακύμανση της πυκνότητας των διδυμιών κατά μήκος των δοκιμίων εφελκυσμού και διαπιστώθηκε ο καθοριστικός ρόλος των διδυμιών στην πλαστική διαρροή στη διεύθυνση της έλασης. Ως προς τη συμπεριφορά κόπωσης, παρατηρήθηκε ότι οι καμπύλες S-N παρουσιάζουν μια πολύ ήπια μετάβαση από την περιοχή της ολιγοκυκλικής στην πολυκυκλική κόπωση, δηλαδή ότι η διάρκεια ζωής σε κόπωση εξαρτάται ισχυρά από μικρές μεταβολές της τάσης. Οι ρωγμές κόπωσης στο κράμα ΑΖ31 εκκινούν πρόωρα σε σημεία ασυμβατότητας πλαστικής παραμόρφωσης (π.χ. όρια των κόκκων) λόγω της αδυναμίας ενεργοποίησης των απαραίτητων 5 συστημάτων ολίσθησης που απαιτεί το κριτήριο του von Mises. Ως εκ τούτου το υλικό οδηγείται σε ψαθυρούς μηχανισμούς εκκίνησης και διάδοσης των ρωγμών κόπωσης. Για την καλύτερη κατανόηση του μηχανισμού κόπωσης του κράματος ΑΖ31 πραγματοποιήθηκαν δοκιμές νανο-διεισδύσεων σε διαφορετικά ποσοστά της διάρκειας ζωής προκειμένου να γίνει αντιληπτός ο μηχανισμός συσσώρευσης βλάβης στο αρχικό στάδιο της συνολικής διαδικασίας. Τα αποτελέσματα των εν λόγω δοκιμών έδειξαν ότι η επιφανειακή σκληρότητα του υλικού δεν παρουσιάζει ουσιαστική μεταβολή με τους κύκλους καταπόνησης μέχρι την εμφάνιση της ρωγμής. Τα στοιχεία αυτά αποτελούν μια ισχυρή ένδειξη ότι το υλικό αδυνατεί να συσσωρεύσει βλάβη υπό τη μορφή κυκλικής πλαστικότητας, με αποτέλεσμα την πρόωρη εκκίνηση των ρωγμών κόπωσης. Οι μηχανικές δοκιμές σε προ-διαβρωμένο υλικό έδειξαν, όπως ήταν αναμενόμενο, μια σημαντική υποβάθμιση της συνολικής μηχανικής συμπεριφοράς των υλικών. Η υποβάθμιση αυτή αποδίδεται στην προοδευτική ανάπτυξη των τριμμάτων διάβρωσης κάτω από εφελκυστικά φορτία. Τα τρίμματα διάβρωσης δρούν ως εγκοπές, αυξάνοντας τοπικά την τάση και παράλληλα μειώνοντας τη φέρουσα διατομή των δοκιμίων, με αποτέλεσμα το υλικό να αστοχεί χωρίς να προλάβει να δεχθεί σημαντικές πλαστικές παραμορφώσεις. Στην περίπτωση της κυκλικής φόρτισης η παρουσία των εγκοπών διάβρωσης έχει ως αποτέλεσμα τη δημιουργία συγκέντρωσης τάσεων στα άκρα τους, διευκολύνοντας έτσι την εκκίνηση και διάδοση των ρωγμών κόπωσης. Συμπερασματικά, η παρούσα εργασία παρέχει σαφείς ενδείξεις ότι το κύριο μειονέκτημα των κραμάτων μαγνησίου για χρήση σε αεροπορικές δομές είναι η συμπεριφορά κόπωσης, η οποία αποδίδεται στην κρυσταλλική δομή του μαγνησίου, και δευτερεύον μειονέκτημα είναι η υψηλή διαβρωτικότητα αυτών των υλικών η οποία οδηγεί σε σημαντική υποβάθμιση της μηχανικής συμπεριφοράς. / Permanent objective of the aeronautical industry is the weight reduction of airframe, systems and interior components in order to increase operational capacity and reduce environmental impact via reduction of fuel consumption. In this frame, the utilization of low weight materials, like magnesium alloys, could represent a break through solution. Yet, the aeronautical application of magnesium alloys remains very limited due to the high corrosion susceptibility and the poor damage tolerance behaviour as compared to other structural alloys like aluminum and titanium. In the present work, a systematic investigation of the mechanical behaviour of two advanced rolled AZ magnesium alloys, namely AZ31 and AZ61, was conducted by taking into account the deformation mechanisms, damage accumulation mechanisms and failure mechanisms taking place in the microstructure of the materials. The present work mainly focuses on the fatigue behaviour of AZ31 alloy. Furthermore, the effect of prior corrosion damage on the mechanical behaviour has also been assessed. To accomplish the above objective a thorough experimental investigation was performed including microstructural characterization, tensile tests, constant amplitude fatigue tests and constant amplitude fatigue crack growth tests on both parent and pre-corroded specimens. The experimental results were supported by extensive metallographic and fractographic investigation. The tensile tests performed revealed anisotropy of the yield strength of the materials between rolling and transverse direction. The metallographic analysis has shown that the observed anisotropy is attributed to the near basal texture of the alloys and the angular spread of basal poles towards the rolling direction. Furthermore, the metallographic investigation indicates a clear variation in twinning density across the specimen length and the decisive role of twins in plastic deformation has been pointed out. Concerning the fatigue behaviour, it was observed that the S-N curves exhibit a very smooth transition from low to high cycle fatigue regime, indicating very high stress sensitivity on the fatigue life of the materials. Fatigue cracks in AZ31 alloy initiate in an early stage between strain incompatibility points (e.g. grain boundaries) due to difficulties in satisfying the von Mises criterion. As a result, the initiation and propagation mechanisms of the fatigue cracks are characterized as cleavage. In order to understand the fatigue mechanism of magnesium alloy AZ31 in the early stages of fatigue damage accumulation process, nano-indentation measurements at different percentages of the fatigue life of the AZ31 alloy have been performed and hardness alteration was obtained. The obtained results have shown that nano-hardness remains unchangeable with fatigue cycles until crack initiation. This has been interpreted as a lack of the material’s ability to accumulate damage in terms of cyclic plasticity at the early stages resulting in very early crack initiation. This is a major disadvantage for application where fatigue life is of primary importance. The mechanical tests on pre-corroded specimens have shown a significant degradation of the overall mechanical behaviour of the materials. Tensile properties degradation due to prior corrosion damage is attributed to the progressive notch effect of the developed pits, which increase locally the applied stress and in parallel reduce the ability of the material to accumulate large amounts of plastic deformation. In the case of cyclic loading the presence of corrosion pits results in the development of stress concentration, facilitating essentially the initiation and propagation of fatigue cracks. Concluding, the present work provides evidence that the major disadvantage of magnesium alloys for use in aeronautical structures is their fatigue behaviour, which is attributed to the hexagonal structure of magnesium, and secondarily the high corrosion susceptibility of magnesium which leads to significant degradation of the mechanical performance of the alloys.
146

Análise da solidificação de ligas de magnésio para aplicação na fabricação de motores

Figueiredo, Arlan Pacheco January 2008 (has links)
Magnésio e suas ligas têm adquirido importância cada vez mais significativa como material estrutural de peso leve despertando um singular interesse pela indústria uma vez que oferece a melhor relação peso/resistência entre os metais. Os campos mais conhecidos de sua aplicação consistem na construção de veículos, na aeronáutica, manipulação industrial (robôs, automatização) e tecnologia de comunicação. Em particular, a indústria automobilística tem crescentemente ampliado a utilização de ligas de magnésio na produção de peças que vão desde caixas de câmbio até aros de rodas. As principais razões para este desenvolvimento são: mudanças na legislação ambiental, as exigências de cliente, e objetivos corporativos que requerem veículos mais leves diminuindo o consumo de combustível. O uso do magnésio para aplicações estruturais em altas temperaturas é limitado devido a sua baixa resistência à fluência. Isso se deve ao enfraquecimento do contorno de grão a partir da precipitação descontínua da fase b-Mg17Al12 de baixo ponto de fusão. Dentre as ligas de magnésio desenvolvidas para resistência à fluência, as ligas do sistema Mg-Al-RE-Ca oferecem ótimo desempenho com resultados similares à liga de alumínio ADC12. Muitos trabalhos sobre o sistema de ligas Mg-Al-RE-Ca foram realizados visando compreender a relação entre microestruturas e propriedades mecânicas. Entretanto, poucos estudos relacionaram a influência das variáveis de solidificação na formação das microestruturas. O presente trabalho tem como objetivo realizar um estudo em uma liga Mg-4%Al-3%La-1%Ca analisando a influência das variáveis térmicas tais como taxas de resfriamento, velocidade da isoterma liquidus e gradientes de temperatura, na formação de estruturas, na transição colunarequiaxial e espaçamento dendrítico durante o processo de solidificação. A previsão das distintas estruturas, tais como zona colunar e equiaxial é de grande interesse para avaliação e projeção das propriedades mecânicas dos fundidos. Dessa forma, a liga estudada foi submetida à solidificação unidirecional vertical ascendente e análise térmica. Foram realizadas análises metalográficas nos lingotes solidificados. Os resultados colaboram para uma melhor compreensão do fenômeno de solidificação da liga e serve como ferramenta no desenvolvimento de modelos de previsões de formação de micro e macroestruturas que influenciam diretamente nas propriedades mecânicas. / Due to their superior weight/resistance relation, magnesium and its alloys have been acquiring a great deal of importance in the modern industry, specially as lightweight structural materials in the fields of vehicle construction, aeronautics, industrial robotics, automation, and communication technologies. In particular, the automotive industry has been increasingly expanding the use of magnesium alloys in the production of auto-parts, ranging from gearbox housings to steering wheels. The main reasons for this developments are changes in environmental legislations, new customer requirements, and corporate policies regarding fuel consumption and weight/power relations. The use of magnesium alloys for structural applications at high temperatures is limited due to the precipitation of the discontinuous phase b-Mg17Al12, which in fact, weakens the grain boundary during service resulting in a low creep resistance. Among the magnesium alloys developed for creep resistance, the alloys of the system Al-Mg-RE-Ca offer optimum performance with results similar to the ADC12 aluminum alloy. Many studies on the Al-Mg-RE-Ca system alloys were aimed to understand the relationship between microstructure and mechanical properties. However, few studies undertake the influence of the solidification variables in the microstructure formation. This work aims to study the influence of some thermal variables such as temperature gradients, solidification and growth tip rate on the formation of microstructures, the columnar/equiaxial transition and dendrite arm spacing, during the solidification process of a Mg-4%Al-3%La- 1%Ca alloy. The prediction of the different structures, such as the columnar and the equiaxial regions is of great interest for the assessment and projection of the mechanical properties of the casts. Therefore, the alloy studied in this work were submitted to thermal analysis during an unidirectional vertical ascending solidification, as well as optical and scanning electron microscopy characterization. The results contribute to a better understanding of the solidification phenomena of the magnesium alloys, as well as a tool in the development of numerical models for the prediction of structures which directly influence the mechanical properties of the parts.
147

Análise da solidificação de ligas de magnésio para aplicação na fabricação de motores

Figueiredo, Arlan Pacheco January 2008 (has links)
Magnésio e suas ligas têm adquirido importância cada vez mais significativa como material estrutural de peso leve despertando um singular interesse pela indústria uma vez que oferece a melhor relação peso/resistência entre os metais. Os campos mais conhecidos de sua aplicação consistem na construção de veículos, na aeronáutica, manipulação industrial (robôs, automatização) e tecnologia de comunicação. Em particular, a indústria automobilística tem crescentemente ampliado a utilização de ligas de magnésio na produção de peças que vão desde caixas de câmbio até aros de rodas. As principais razões para este desenvolvimento são: mudanças na legislação ambiental, as exigências de cliente, e objetivos corporativos que requerem veículos mais leves diminuindo o consumo de combustível. O uso do magnésio para aplicações estruturais em altas temperaturas é limitado devido a sua baixa resistência à fluência. Isso se deve ao enfraquecimento do contorno de grão a partir da precipitação descontínua da fase b-Mg17Al12 de baixo ponto de fusão. Dentre as ligas de magnésio desenvolvidas para resistência à fluência, as ligas do sistema Mg-Al-RE-Ca oferecem ótimo desempenho com resultados similares à liga de alumínio ADC12. Muitos trabalhos sobre o sistema de ligas Mg-Al-RE-Ca foram realizados visando compreender a relação entre microestruturas e propriedades mecânicas. Entretanto, poucos estudos relacionaram a influência das variáveis de solidificação na formação das microestruturas. O presente trabalho tem como objetivo realizar um estudo em uma liga Mg-4%Al-3%La-1%Ca analisando a influência das variáveis térmicas tais como taxas de resfriamento, velocidade da isoterma liquidus e gradientes de temperatura, na formação de estruturas, na transição colunarequiaxial e espaçamento dendrítico durante o processo de solidificação. A previsão das distintas estruturas, tais como zona colunar e equiaxial é de grande interesse para avaliação e projeção das propriedades mecânicas dos fundidos. Dessa forma, a liga estudada foi submetida à solidificação unidirecional vertical ascendente e análise térmica. Foram realizadas análises metalográficas nos lingotes solidificados. Os resultados colaboram para uma melhor compreensão do fenômeno de solidificação da liga e serve como ferramenta no desenvolvimento de modelos de previsões de formação de micro e macroestruturas que influenciam diretamente nas propriedades mecânicas. / Due to their superior weight/resistance relation, magnesium and its alloys have been acquiring a great deal of importance in the modern industry, specially as lightweight structural materials in the fields of vehicle construction, aeronautics, industrial robotics, automation, and communication technologies. In particular, the automotive industry has been increasingly expanding the use of magnesium alloys in the production of auto-parts, ranging from gearbox housings to steering wheels. The main reasons for this developments are changes in environmental legislations, new customer requirements, and corporate policies regarding fuel consumption and weight/power relations. The use of magnesium alloys for structural applications at high temperatures is limited due to the precipitation of the discontinuous phase b-Mg17Al12, which in fact, weakens the grain boundary during service resulting in a low creep resistance. Among the magnesium alloys developed for creep resistance, the alloys of the system Al-Mg-RE-Ca offer optimum performance with results similar to the ADC12 aluminum alloy. Many studies on the Al-Mg-RE-Ca system alloys were aimed to understand the relationship between microstructure and mechanical properties. However, few studies undertake the influence of the solidification variables in the microstructure formation. This work aims to study the influence of some thermal variables such as temperature gradients, solidification and growth tip rate on the formation of microstructures, the columnar/equiaxial transition and dendrite arm spacing, during the solidification process of a Mg-4%Al-3%La- 1%Ca alloy. The prediction of the different structures, such as the columnar and the equiaxial regions is of great interest for the assessment and projection of the mechanical properties of the casts. Therefore, the alloy studied in this work were submitted to thermal analysis during an unidirectional vertical ascending solidification, as well as optical and scanning electron microscopy characterization. The results contribute to a better understanding of the solidification phenomena of the magnesium alloys, as well as a tool in the development of numerical models for the prediction of structures which directly influence the mechanical properties of the parts.
148

Vliv rychlosti ochlazování na mikrostrukturu a mechanické vlastnosti odlitků z hořčíkových slitin AZ91, WE43B a Elektron21 vyráběných metodou přesného lití / Influence of cooling rate on microstructure and mechanical properties of castings from magnesium alloys AZ91, WE43B and Elektron21 produced by investment casting

Jakubcová, Eliška January 2021 (has links)
This master's thesis deals with the effects of the cooling rate on the grain size of magnesium alloys based on Mg–Al (AZ91E) and Mg–Zr–RE (WE43B and Elektron21). The effects of the cooling rate are analyzed on samples of varying thickness for different cooling methods (forced–air–cooling, cooling into polymer, natural air cooling). We also evaluated the final microstructure, porosity, hardness, and mechanical properties for investment castings. Based on the evaluated grain sizes, we demonstrated a significant difference in the cooling rate influence on the grain size for the alloy AZ91E. Compared to Zirconium-based alloys (WE43B and Elektron21), for which the zirconium content influences grain size the most. For the alloys based on Mg–Zr–RE, it is possible to prefer casting conditions, without negative enlarging of the grain size.
149

Pasivace hořčíkových slitin / Passivation of magnesium alloys

Krejčířová, Dana January 2008 (has links)
Diploma thesis deals with the technology of surface modifications of magnesium alloys. Basic knowledge from the field of the corrosion of metal materials. The division corrosion according to way of attack and corrosion environment, etc. There is an enumeration of ways of the corrosion defence. Questions of surface modifications with an emphasis on passivation by conversion coating and its analysis. Characteristics of magnesium and its alloys. Magnesium alloys with lithium, possibilities of its passivation and the verification of corrosion resistance. Enumeration of the used devices, chemicals and materials. characteristics of the used alloys. creation of the corrosion resistance standard. Research in passivation on the alloy containing 12 percent of lithium. The verification of the corrosion test usability based on the suggestion of the background research results. The test results for passivated as well as untreated samples and the reference material (steel). Aplication of chromate-free passivation and corrosion test on the alloy containing 12 percent of lithium.
150

Fluoridové povlaky hořčíku připravované v taveninách / Fluoride coatings on magnesium prepared in melts

Drábiková, Juliána January 2014 (has links)
This work deals with the corrosion protection of magnesium alloy AZ31, AZ61, AZ91 using fluoride conversion coating prepared from Na[BF4] melt. The theoretical part describes the properties of magnesium alloys, the recent results of fluoride conversion coatings preparation and analysis of the available literature about the properties of salt Na[BF4] and its decomposition products. The experimental part was devided into two main sections. The first deals with the corrosion resistance of the treated magnesium alloys (AZ31, AZ61, AZ91 and AZ91 annealed) in the Na[BF4] melt. Corrosion resistance was tested using potentiodynamic tests and tests in the corrosion chamber. In the second part, the mechanism has been studied for preparing fluoride conversion coating, where it was shown that in air-free atmosphere the oxidizing agent in the process is boron, which is reduced from BIII to B0, and thereby enables the fluoride conversion coating.

Page generated in 0.0753 seconds