• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 243
  • 83
  • 68
  • 39
  • 22
  • 10
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 594
  • 594
  • 86
  • 84
  • 74
  • 72
  • 61
  • 48
  • 44
  • 42
  • 42
  • 39
  • 38
  • 38
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Study of Doping Dependence of the Vortex Regime and Magnetic Response in an Underdoped High Temperature Superconductors

Gyawali, Parshu Ram 01 December 2009 (has links)
No description available.
42

Binding of a Charged Particle in the Presence of an Electric Dipole and a Magnetic Field

Chatterjee, Arindam 09 1900 (has links)
We formulate a variational method to obtain the binding energies of a charged particle in presence of an electric dipole and a magnetic field aligned along the dipole. First, we test the method by obtaining the critical dipole moment for a point dipole, as well as a finite dipole in the absence of a magnetic field. A few larger dipole moments supporting a zero energy bound state are also obtained. Adding a magnetic field of ~ 20 - 100 T, we show that for a rigid and stationary dipole of moment 2.54 D, the electron binding energy increases by 15% - 66%. Our approach also shows the absence of a critical dipole moment in presence of an aligned magnetic field. / Thesis / Master of Science (MSc)
43

Modeling, Implementation, and Simulation of Two-Winding Plate Inductor

Cui, Han 30 June 2017 (has links)
Design of magnetic component is a key factor in achieving high frequency, high power-density converters. Planar magnetics are widely used in bias power supplies for the benefits of low profile and their compatibility with printed-circuit boards (PCB). The coupled inductors with winding layers sandwiched between two core plates are studied in this dissertation in order to model the self-inductance, winding loss, and core loss. The most challenging task for the plate-core inductor is to model the magnetic field with finite core dimensions, very non-uniform flux pattern, and large fringing flux. The winding is placed near the edge of the core to maximize the energy within the limited footprint and the amount of energy stored outside the core volume is not negligible. The proportional-reluctance, equal-flux (PREF) model is developed to build the contours with equal amount of flux by governing the reluctance of the flux path. The shapes of the flux lines are modeled by different functions that guided by the finite-element simulation (FES). The field from the flux lines enables calculation of inductance, winding loss, and core loss, etc. The inductance matrix including self-inductance and mutual inductance of a coupled inductor is important for circuit simulation and evaluation. The derivation of the inductance matrix of inductors with plate-core structure is described in Chapter 2. Two conditions are defined as common-mode (CM) field and differential-mode (DM) field in order to compute the matrix parameters. The proportional-reluctance, equal-flux (PREF) model introduced is employed to find the CM field distribution, and the DM field distribution is found from functions analogous to that of a solenoid's field. The inductance calculated are verified by flex-circuit prototypes with various dimensions, and the application of the inductance model is presented at the last with normalized parameters to cover structures within a wide-range. In circuit where coupled inductors are used instead of transformers, the phase shift between the primary and secondary side is not always 180 degrees. Therefore, it is important to model the winding loss for a coupled inductor accurately. The winding loss can be calculated from the resistance matrix, which is independent of excitations but only relates to the frequency and geometry. The methodology to derive the resistance matrix from winding losses of coupled inductors is discussed. Winding loss model with 2D magnetic field is improved by including the additional eddy current loss for better accuracy for the plate-core structures. The resistance matrix calculated from the model is verified by both measurement results and finite-element simulation (FES) of coupled-inductor prototypes. Accurate core loss model is required for designing magnetic components in power converters. Most existing core loss models are based on frequency domain calculation and they cannot be implemented in SPICE simulations. The core loss model in the time domain is discussed in Chapter 5 for arbitrary current excitations. An effective ac flux density is derived to simplify the core loss calculation with non-uniform field distribution. A sub-circuit for core loss simulation is established in LTSPICE that is capable of being integrated to the power stage simulation. Transient behavior and accurate simulation results from the LTSPICE matches very well with the FES results. An equivalent circuit for coupled windings is developed for inductors with significant fringing effect. The equivalent circuit is derived from a physical model that captures the flux paths by having a leakage inductor and two mutual inductors on the primary and secondary side. A mutual resistor is added to each side in parallel with one mutual inductor to model the winding loss with open circuit and phase-shift impact. Two time-varying resistors are employed to represent the core loss in the time-domain. The equivalent circuit is verified by both finite-element simulation (FES) and prototypes fabricated with flexible circuit. / Ph. D.
44

Mathematic approaches for the calibration of the CHAMP satellite magnetic field measurements

Yin, Fan January 2010 (has links)
CHAMP (CHAllenging Minisatellite Payload) is a German small satellite mission to study the earth's gravity field, magnetic field and upper atmosphere. Thanks to the good condition of the satellite so far, the planned 5 years mission is extended to year 2009. The satellite provides continuously a large quantity of measurement data for the purpose of Earth study. The measurements of the magnetic field are undertaken by two Fluxgate Magnetometers (vector magnetometer) and one Overhauser Magnetometer (scalar magnetometer) flown on CHAMP. In order to ensure the quality of the data during the whole mission, the calibration of the magnetometers has to be performed routinely in orbit. The scalar magnetometer serves as the magnetic reference and its readings are compared with the readings of the vector magnetometer. The readings of the vector magnetometer are corrected by the parameters that are derived from this comparison, which is called the scalar calibration. In the routine processing, these calibration parameters are updated every 15 days by means of scalar calibration. There are also magnetic effects coming from the satellite which disturb the measurements. Most of them have been characterized during tests before launch. Among them are the remanent magnetization of the spacecraft and fields generated by currents. They are all considered to be constant over the mission life. The 8 years of operation experience allow us to investigate the long-term behaviors of the magnetometers and the satellite systems. According to the investigation, it was found that for example the scale factors of the FGM show obvious long-term changes which can be described by logarithmic functions. The other parameters (offsets and angles between the three components) can be considered constant. If these continuous parameters are applied for the FGM data processing, the disagreement between the OVM and the FGM readings is limited to pm1nT over the whole mission. This demonstrates, the magnetometers on CHAMP exhibit a very good stability. However, the daily correction of the parameter Z component offset of the FGM improves the agreement between the magnetometers markedly. The Z component offset plays a very important role for the data quality. It exhibits a linear relationship with the standard deviation of the disagreement between the OVM and the FGM readings. After Z offset correction, the errors are limited to pm0.5nT (equivalent to a standard deviation of 0.2nT). We improved the corrections of the spacecraft field which are not taken into account in the routine processing. Such disturbance field, e.g. from the power supply system of the satellite, show some systematic errors in the FGM data and are misinterpreted in 9-parameter calibration, which brings false local time related variation of the calibration parameters. These corrections are made by applying a mathematical model to the measured currents. This non-linear model is derived from an inversion technique. If the disturbance field of the satellite body are fully corrected, the standard deviation of scalar error triangle B remains about 0.1nT. Additionally, in order to keep the OVM readings a reliable standard, the imperfect coefficients of the torquer current correction for the OVM are redetermined by solving a minimization problem. The temporal variation of the spacecraft remanent field is investigated. It was found that the average magnetic moment of the magneto-torquers reflects well the moment of the satellite. This allows for a continuous correction of the spacecraft field. The reasons for the possible unknown systemic error are discussed in this thesis. Particularly, both temperature uncertainties and time errors have influence on the FGM data. Based on the results of this thesis the data processing of future magnetic missions can be designed in an improved way. In particular, the upcoming ESA mission Swarm can take advantage of our findings and provide all the auxiliary measurements needed for a proper recovery of the ambient magnetic field. / CHAMP (CHAllenging Minisatellite Payload) ist eine deutsche Kleinsatellitenmission für die Forschung und Anwendung in Bereich der Geowissenschaften und Atmosphärenphysik. Das Projekt wird vom GFZ geleitet. Mit seinen hochgenauen, multifunktionalen, sich ergänzenden Nutzlastelementen (Magnetometer, Akzelerometer, Sternsensor, GPS-Empfänger, Laser-Retroreflektor, Ionendriftmeter) liefert CHAMP erstmalig gleichzeitig hochgenaue Schwere- und Magnetfeldmessungen (seit Mitte 2000). Dank des bisherigen guten Zustandes des Satelliten ist die auf 5 Jahre ausgelegte Mission bis 2009 verlängert geworden. An Board befinden sich ein skalares Overhauser-Magnetometer(OVM) für Kalibrierungszwecke sowie zwei Fluxgate-Magnetometer(FGM) zur Messung des magnetischen Feldvektors. Die Messungen vom FGM werden immer verglichen mit denen vom OVM und korregiert im Fall von Widersprüche, das ist die sog. Skalar-Kalibrierung. Um eine zuverlässige Datenqualität während der 8 jährigen Mission zu garantieren, ist die Nachkalibrierung implementiert. Im Rahmen der standard mäßigen Datenverarbeitung werden die Instrumentenparameter des FGM alle 15 Tage neu bestimmt. Das Ziel der vorliegenden Arbeit ist es, eine Verbesserung der Vektormagnetfelddaten zu erzielen durch eine neue Methode der Kalibrierung, die die Eigenschaften der Sensoren und Störung vom Raumfahrzeug mit berücksichtigt. Die Erfahrung aus den zurückliegenden Jahren hat gezeigt, dass sich die Skalenfaktoren des FGM stark mit der Zeit ändern. Dieser Verlauf lässt sich gut durch eine Logarithmuskurve anpassen. Andere Parameter wie die Winkel und die Offsets scheinen stabil zu sein. Eine Ausnahme macht der Offset der Z-Komponent. Dieser bedarf einer regelmäßigen Korrektur. Während die Standardverarbeitung eine undifferenzierte Bestimmung aller 9 FGM Parameter durch nicht-lineare Inversion der skalar Daten vornimmt, beziehen wir jetzt die langzeitlichen Eigenschaften der Parameter in die Bestimmung mit ein. Eine weitere Verbesserung der CHAMP-Magnetfelddaten konnte erreicht werden durch geeignete Berücksichtigung von Störung vom Raumfahrzeug. Die verbleibenden Unsicherheiten konnten durch diese Maßnahmen auf eine Standardabweichung von 0.1nT reduziert werden.
45

Instabilities in a Crystal Growth Melt Subjected to Alternating Magnetic Fields

Davis, Kenny 16 September 2013 (has links)
In confined bulk crystal growth techniques such as the traveling heater method, base materials in an ampoule are melted and resolidified as a single crystal. During this process, flow control is desired so that the resulting alloy semiconductors are uniform in composition and have minimal defects. Such control allows for tuned lattice parameters and bandgap energy, properties necessary to produce custom materials for specific electro-optical applications. For ternary alloys, bulk crystal growth methods suffer from slow diffusion rates between elements, severely limiting growth rates and reducing uniformity. Exposing the electrically conducting melt to an external alternating magnetic field can accelerate the mixing. A rotating magnetic field (RMF) can be used to stir the melt in the azimuthal direction, which reduces temperature variations and controls the shape at the solidification front. A traveling magnetic field (TMF) imposes large body forces in the radial and axial directions, which helps reduce the settling of denser components and return them to the growth front. In either case, mixing is desired, but turbulence is not. At large magnetic Taylor numbers the flow becomes unstable to first laminar and then turbulent transitions. It is imperative that crystal growers know when these transitions will occur and how the flow physics is affected. Here, the melt driven by electromagnetic forces is analyzed through the use of 3D numerical simulations of the flow field up to and beyond the point of laminar instability. The analysis aims to emulate laboratory conditions for generating electromagnetic forces for both types of alternating magnetic fields and highlights the differences between laboratory forces and the analytical approximations that are often assumed. Comparisons are made between the resulting forces, flow fields, and points of instability as the frequency of the alternating field varies. Critical Taylor numbers and the resulting unstable flow fields are compared to the results from linear stability theory.
46

Modelling the Geometric Structure of the Magnetic Field in the Nightside Magnetosphere

2013 March 1900 (has links)
In this thesis, a simple model of the stretched magnetic field lines in the nightside magnetotail was created. The nightside magnetosphere model contains four main regions: plasmasphere, plasma sheet, magnetic lobes, and low latitude boundary layers. The plasma sheet is split into three regions based on the shape of the closed field lines present: dipole plasma sheet, transition plasma sheet, and stretched plasma sheet (SPS). The SPS, the focus of this thesis, is split into two regions: disruption zones (DZs) and a central neutral sheet (NS). The shape of the stretched field lines contain four inflection points. The convex curvature regions form the DZs and the central concave curvature region forms the NS. The NS is split into two regions: outer neutral sheet (ONS) and inner neutral sheet (INS). Due to the reversal of the x-component of the magnetic field at the center line of the NS, the protons are magnetized in the ONS and "unmagnetized" in the INS. There are two main current systems in the SPS. The first is a double vortex current system consisting of eastward current in the DZs that closes westward in the NS. The second system is the NS field-aligned current (FAC) system. It is generated in the INS mainly by the earthward convective drift of the electrons while the "unmagnetized" protons have little convective drift and remain tailward of the electrons. This FAC system produces the pre-onset electron auroral arc during the growth phase of the substorm. A simple model of the stretched magnetic field lines was created in order to calculate the current systems present in the SPS. The simple model was based entirely upon the shape of the stretched field lines. It passed two physical tests, divergence of the magnetic field and limits at infinity, so it was used to calculate currents. The total current using Ampere's law and the curvature current was found. Both results agreed with the double vortex current system.
47

The Evolution Of Weak, Diffuse Magnetic Fields Of The Sun And The Heating Of The Quiet Corona

Dikpati, Mausumi 05 1900 (has links) (PDF)
No description available.
48

Planar Hall Effect : Detection of Ultra Low Magnetic Fields and a Study of Stochasticity in Magnetization Reversal

Roy, Arnab January 2015 (has links) (PDF)
In the present thesis, we have explored multiple aspects concerning the stochasticity of magnetic domain wall motion during magnetization reversal, all of which originated from our initial study of magnetic field sensing using planar Hall effect. Magnetic field sensors occupy a very important and indispensable position in modern technology. They can be found everywhere, from cellphones to automobiles, electric motors to computer hard disks. At present there are several emerging areas of technology, including biotechnology, which require magnetic field sensors which are at the same time simple to use, highly sensitive, robust under environmental conditions and sufficiently low cost to be deployed on a large scale. Magnetic field sensing using planar Hall effect is one such feasible technology, which we have explored in the course of the thesis. The work was subsequently expanded to cover some fundamental aspects of the stochasticity of domain wall motion, studied with planar Hall effect, which forms the main body of work in the present study. In Chapter 1, we give an introduction to the phenomenology of planar Hall effect, which is the most important measurement technique used for all the subsequent studies. Some early calculations, which had first led to the understanding of anisotropic magnetoresistance and planar Hall effect as being caused by spin-orbit interaction are discussed. In Chapter 2, we discuss briefly the experimental techniques used in the present study for sample growth and fabrication, structural and magnetic characterization, and measurement. We discuss pulsed laser ablation, which is the main technique used for our sample growth. Particular emphasis is given to the instrumentation that was carried out in-house for MOKE and low field magnetotransport (AMR and PHE) measurement. This includes an attempt at domain wall imaging through MOKE microscopy. Some of the standard equipments used for this work, such as the SQUID magnetometer and the acsusceptometer are also discussed in detail. In Chapter 3 we discuss our work on planar Hall sensors that led to the fabrication of a device with a very simple architecture, having transfer characteristics of 650V/A.T in a range of _2Oe. The sensing material was permalloy (Ni81Fe19), and the value had been obtained without using an exchange biased pinning layer. Field trials showed that the devices were capable of geomagnetic field sensing, as well as vehicle detection by sensing the anomaly in Earth's magnetic field caused by their motion. Its estimated detection threshold of 2.5nT made it well suited for several other applications needing high sensitivity in a small area, the most prominent of them being the detection of macromolecules of bio-medical significance. Chapter 4: The work on Barkhausen noise was prompted by reproducibility problems faced during the sensor construction, both between devices as well as within the same device. Study of the stochastic properties led us to the conclusion that the devices could be grouped into two classes: one where the magnetization reversal occurred in a single step, and the other where it took a 0staircase0 like path with multiple steps. This led us to simulations of Barkhausen noise using nucleation models like the RFIM whence it became apparent that the two different groups of samples could be mapped into two regimes of the RFIM distinguished by their magnetization reversal mode. In the RFIM, the nature of the hysteresis loop depends on the degree of disorder, with a crossover happening from single-step switching to multi-step switching at a critical disorder level. Appropriate changes also appear in the Barkhausen noise statistics due to this disorder-induced crossover. By studying the Barkhausen noise statistics for our permalloy samples and comparing them with simulations of the RFIM, we found nearly exact correspondence between the two experimental groups with the two classes resulting from crossing the critical disorder. What remained was to quantify the 0disorder0 level of our samples, which was done through XRD, residual resistivity and a study of electron-electron interaction effects in the resistivity. All these studies led to the conclusion that the samples reversing in multiple steps were more 0defective0 than the other group, at par with the model predictions. This completed the picture with respect to the modeling of the noise. In experiments, it was found that a high rate of film deposition yielded less 0defective0 samples, which severed as an important input for the sensor construction. These results can be viewed from a somewhat broader perspective if we consider the present scenario in the experimental study of Barkhausen noise, or crackling noise in general. Two classes of models exist for such phenomena: front propagation models and nucleation models. Both appear to be very successful when it comes to experiments with bulk materials, while the comparison with experiments on thin films is rather disappointing. It is still not clear whether the models are at fault or the experiments themselves. Through our study, we could demonstrate that there can be considerable variation in the Barkhausen noise character of the same material deposited in the same way, and what was important was the degree of order at the microscopic level. This may be a relevant factor when experimental papers report non-universality of Barkhausen noise in thin films, which can now be interpreted as either insufficient defects or a sample area too small for the study. Chapter 5: Defects in a sample are not the only cause for stochastic behavior during magnetization. In most cases, random thermal 0events0 are also an important factor determining the path to magnetization reversal, which was also true for our permalloy samples. We studied the distribution of the external fields at which magnetization reversal took place in our samples, and tried to explain it in terms of the popular Neel-Brown model of thermal excitation over the anisotropy barrier. The analysis showed that even though the coercivity behaved 0correctly0 in terms of the model predictions, the behavior of the distribution width was anomalous. Such anomalies were common in the literature on switching field distributions, but there seemed to be no unified explanation, with different authors coming up with their own 0exotic0 explanations. We decided to investigate the simplest situations that could result in such a behavior, and through some model-based calculations, came to the conclusion that one of the causes of the anomalies could be the different magnitudes of barrier heights/anisotropy fields experienced by the magnetic domain wall when the reversal occurs along different paths. Though an exact match for the behavior of the distribution width could not be obtained, the extended Neel-Brown model was able to produce qualitative agreement. Chapter 6 contains a study of some interesting 0geometrical0 effects on Barkhausen noise of iron thin films. By rotating the applied magnetic field out-of plane, we could observe the same single-step to multi-step crossover in hysteresis loop nature that was brought about by varying disorder in Chapter 4. We could explain this through simulations of a random anisotropy Ising model, which, apart from exhibiting the usual disorder induced crossover, showed a transition from sub-critical to critical hysteresis loops when the external field direction was rotated away form the average anisotropy direction. Once again, simulation and experiment showed very good agreement in terms of the qualitative behavior. In the second part of this chapter, a study of exchange biased Fe-FeMn system was carried out, where it was observed that the reversal mode has been changed from domain wall motion to coherent rotation. Barkhausen noise was also suppressed. Though many single-domain models existed for this type of reversal, our system was not found to be strictly compatible with them. The disagreement was with regard to the nature of the hysteresis, which, if present, had to be a single step process for a single domain model. The disagreement was naturally attributed to interaction with the nearby magnetic moments, to verify which, simulations were done with a simplified micromagnetic code, which produced excellent agreement with experiment. In Chapter 7, we have studied the temporal properties of Barkhausen avalanches, to compare the duration distributions with simulation. We had used a permalloy sample that was sub-critical according to avalanche size distributions, and our measurement was based on magneto-optic Kerr effect. We measured duration distributions which showed a similar manifestation of finite-size effects as were shown by the size distributions. The power law exponent was calculated, which was deemed 0reasonable0 upon comparison simulations of the sub-critical RFIM. Appendix A contains a study of high-field magnetoresistance of permalloy, which shows that the dominant contribution to magnetoresistance is the suppression of electron-magnon scattering. An interesting correlation is observed between the magnetization of samples and an exchange stiffness parameter d1, that was extracted from magnetoresistance measurements. Here we also re-visit our earlier observation of permalloy thin films possessing a resistance minimum at low temperature. The origin of this minimum is attributed to electron-electron interaction. Appendix B contains the source codes for most of the important programs used for simulation and data analysis. The programs are written in MATLAB and FORTRAN 95. LabView programs used for data acquisition and analysis are not included due to space requirements to display their graphical source codes. Appendix C discusses the studies on a disordered rare-earth oxide LaMnO3. The re-entrant glassy phase is characterized with ac susceptibility and magnetization measurements to extract information about the nature of interactions between the magnetic 0macrospins0 in the system. Appendix D deals with electron scattering experiments performed with spinpolarized electrons (SPLEED) from clean metal surfaces in UHV. A study of the scattering cross sections as a function of energy and scattering angle provides information about spin-orbit and exchange interactions of the electrons with the surface atoms, and can answer important questions pertaining to the electronic and magnetic structure of surfaces. In the course of this study, planar Hall effect is seen to emerge as a powerful tool to study the magnetic state of a thin film, so that it is interesting to apply it to thin films of other materials such as oxides, where magnetization noise studies are next to nonexistent. What also emerged is that there is still a lot of richness present in the details of supposedly well-understood magnetization phenomena, some of which we have explored in this thesis in the context of stochastic magnetization processes.
49

High Magnetic Field in Low Temperature Vacuum Conditions : Magnet Design, Modeling and Testing

Schmid, Nehir January 2020 (has links)
The Swiss Free Electron Laser (SwissFEL) at the Paul Scherrer Institute is a national prestige project that will enable ground breaking new x-ray scattering experiments in areas such as biology, chemistry and physics. A plannedactivity is to generate possibility for x-ray diffraction under high pulsed magnetic fields to explore quantum mattermaterials. In fact, an entire beam line (CristallinaQ), dedicated to extreme sample environment (vacuum, electro-magnetic field, low temperature).This Master’s thesis project concerns the development of a magnet system for pulsed magnetic fields to be synchronised with the free electron laser pulses. The system is based on small-sized coils. This makes the systemtransportable and avoids the huge financial challenges and power requirements of the magnets at pulsed fields laboratories at Toulouse, Dresden or Tallahassee. Ultimately the magnet shall provide large pulsed fields of more than 30 T under conditions very similar to space, i.e. vacuum, low-temperature.The thesis presents the development of a complete coil manufacture and testing setup including a capacitor bank topower the magnet. With planned upgrades of the equipment, the coil manufacturing process is reaching reproduceable levels. I produce a first iteration of magnet coils. They follow a classical copper conductor design reinforcedwith an epoxy-Zylon matrix. During testing we produced 15 Tesla fields without degradation of the coils. At lastI analyse the observations from the tests and propose improvements and future steps for the further developmentof the magnet.
50

Improved description of Earth's external magnetic fields and their source regions using satellite data

Shore, Robert Michael January 2013 (has links)
In near-Earth space, highly spatio-temporally variant magnetic fields result from solar-terrestrial magnetic interaction. These near-Earth external fields currently represent the largest source of error in efforts to model the magnetic field produced in the Earth’s interior. Starting in 1999, the Decade of Geopotential Field Research (Friis-Christensen et al., 2009) has greatly increased the amount of available low-Earth orbit (LEO) satellite magnetic data. These data have driven many advances in field modelling, yet have highlighted that LEO measurements are particularly susceptible to contamination from external fields. This thesis presents a series of studies attempting to describe the external fields in more detail, in order that they can be more effectively separated from the internal fields in magnetic modelling efforts. A range of analysis methods, different for each study, are applied to satellite and ground-based observatory data. Mandea and Olsen’s (2006) method of estimating the secular variation (SV) of the internal field from satellite data via ‘Virtual Observatories’ (VOs) is applied to synthetic data from the upcoming Swarm constellation satellite mission of the European Space Agency. Beggan (2009) found VOs constructed from CHAMP satellite data to be contaminated with external field signals which appeared to have a significant local time (LT) dependence. I find that utilising the increased coverage of LT sectors offered by the Swarm constellation geometry does not significantly decrease the contamination. Following this surprising result I tested a wide range of methods aimed at reducing the VO contamination from each parameterised external field source region. In anticipation of future studies using real data, I used the results of the tests to provide a more complete description of the external field variations affecting analyses of geographically-fixed magnetic phenomena when using satellite data and spherical harmonic analysis (SHA). Ionospheric electric currents flowing at LEO altitudes are known to violate the assumption of measurements taken in a source-free space, required in SHA-based models of the magnetic field. In order to better describe the electromagnetic environment at LEO altitudes, I use data from the Ørsted and CHAMP satellites to calculate the current density from Amp`ere’s integral. Vector magnetic data from discrete overflights of the two satellites (at different altitudes) are rotated into the along-track frame to define the integral loop and its ‘surface area’, permitting estimation of the predominantly zonal current density flowing in the region between the two orbital paths. I designed selection criteria to extract geometrically-stable overflights spanning the range of LTs twice in the 6 years of mutually available satellite vector data. From these overflights I resolve current densities in the range 0:1 μA=m2, with the distribution of current largely matching the LT progression of the Appleton anomaly. I applied detailed tests to check for biases intrinsic to the method, and present results free of systematic errors. The results are compared with the predictions of the CTIP (Coupled Thermosphere-Ionosphere-Plasmasphere) model of ionospheric composition and temperature, showing a typically good spatiotemporal agreement. I find persistent current intensifications between geomagnetic latitudes of 30 and 50 in the post-midnight, pre-dawn sector, a region which has been previously considered to be relatively free of currents. External fields induce currents in the Earth’s conducting mantle, the magnetic fields of which add to the field measured at and above the Earth’s surface. The morphology of the long-period inducing field is poorly resolved on timescales of months to years, reducing the accuracy of mantle induction studies (a key part of the Swarm mission). I improve the description of its morphology via the method of Empirical Orthogonal Functions (EOFs), which I apply to over a decade of ground-based observatory data. EOFs provide a decomposition of the spatiotemporal structures contained in the magnetic field data, with partitions arising from the data themselves, overcoming the relatively simplistic assumptions made about the inducing field morphology in LT. The results of vector data EOF analyses are presented, but I rely primarily on scalar analyses which are more fitting for this study. I overcome the limitations of the irregular observatory distribution with a novel spatial weighting matrix, combining the output from multiple EOF analyses to greatly improve the data coverage in LT. I find that the seasonal variation of the inducing field is more important than the variation of the symmetric ring current on annual periods, and that dawn-dusk asymmetry should be accounted for to increase the accuracy of mantle conductivity estimates based on data covering the decadal timescales of the solar cycle.

Page generated in 0.432 seconds