• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 4
  • 2
  • 1
  • Tagged with
  • 13
  • 13
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Field-responsive colloidal assemblies defined by magnetic anisotropy

Steinbach, Gabi, Schreiber, Michael, Nissen, Dennis, Albrecht, Manfred, Novak, Ekaterina, Sánchez, Pedro A., Kantorovich, Sofia S., Gemming, Sibylle, Erbe, Artur 27 April 2020 (has links)
Particle dispersions provide a promising tool for the engineering of functional materials that exploit self-assembly of complex structures. Dispersion made from magnetic colloidal particles is a great choice; they are biocompatible and remotely controllable among many other advantages. However, their dominating dipolar interaction typically limits structural complexity to linear arrangements. This paper shows how a magnetostatic equilibrium state with noncollinear arrangement of the magnetic moments, as reported for ferromagnetic Janus particles, enables the controlled self-organization of diverse structures in two dimensions via constant and low-frequency external magnetic fields. Branched clusters of staggered chains, compact clusters, linear chains, and dispersed single particles can be formed and interconverted reversibly in a controlled way. The structural diversity is a consequence of both the inhomogeneity and the spatial extension of the magnetization distribution inside the particles. We draw this conclusion from calculations based on a model of spheres with multiple shifted dipoles. The results demonstrate that fundamentally new possibilities for responsive magnetic materials can arise from interactions between particles with a spatially extended, anisotropic magnetization distribution.
12

Configurational and Magnetic Interactions in Multicomponent Systems

Alling, Björn January 2010 (has links)
This thesis is a theoretical study of configurational and magnetic interactions in multicomponent solids. These interactions are the projections onto the configurational and magnetic degrees of freedom of the underlying electronic quantum mechanical system, and can be used to model, explain and predict the properties of materials. For example, the interactions govern temperature induced configurational and magnetic order-disorder transitions in Heusler alloys and ternary nitrides. In particular three perspectives are studied. The first is how the interactions can be derived from first-principles calculations at relevant physical conditions. The second is their consequences, like the critical temperatures for disordering, obtained with e.g. Monte Carlo simulations. The third is their origin in terms of the underlying electronic structure of the materials. Intrinsic defects in the half-Heusler system NiMnSb are studied and it is found that low-energy defects do not destroy the important half-metallic property at low concentrations. Deliberate doping of NiMnSb with 3d-metals is considered and it is found that replacing some Ni with extra Mn or Cr creates new strong magnetic interactions which could be beneficial for applications at elevated temperature. A self-consistent scheme to include the effects of thermal expansion and one-electron excitations in the calculation of the magnetic critical temperature is introduced and applied to a study of Ni1−xCuxMnSb. A supercell implementation of the disordered local moments approach is suggested and benchmarked for the treatment of paramagnetic CrN as a disordered magnetic phase. It is found that the orthorhombic-to-cubic phase transition in this nitride can be understood as a first-order magnetic order-disorder transition. The ferromagnetism in Ti1−xCrxN solid solutions, an unusual property in nitrides, is explained in terms of a charge transfer induced change in the Cr-Cr magnetic interactions. Cubic Ti1−xAlxN solid solutions displays a complex and concentration dependent phase separation tendency. A unified cluster expansion method is presented that can be used to simulate the configurational thermodynamics of this system. It is shown that short range clustering do influence the free energy of mixing but only slightly change the isostructural phase diagram as compared to mean-field estimates.
13

Uniaxial-stress response, electron-phonon interaction, and magnetic interactions in topological semimetals and narrow-gap semiconductors

Schindler, Clemens 24 November 2021 (has links)
Materialien mit einer geringen, aber endlichen Zahl an beweglichen Ladungsträgern bieten eine interessante Plattform für die experimentelle Erforschung von niederenergetischen elektronischen Anregungen. Derartige Halbmetalle und Halbleiter mit geringer Bandlücke zeigen starke Effekte in Magnetfeldern, wie z. B. Quantenoszillationen und Magnetwiderstandseffekte, welche ein hilfreiches Werkzeug zur Untersuchung der elektronischen Eigenschaften darstellen. In Kombination mit verschiedenen experimentellen Techniken wie elektrischen und thermischen Transportmessungen, der Anwendung uniaxialer Spannung, und Ultraschallmessungen, kann man umfassende Informationen über die Wechselwirkungen und Symmetriebeziehungen in solch einem Material gewinnen. In letzter Zeit sind vor allem die topologischen Eigenschaften der elektronischen Bänder in den Fokus der Festkörperphysik gerückt, deren Beitrag zu den Transporteigenschaften insbesondere in Halbmetallen und Halbleitern mit geringer Bandlücke zu klären ist. In der vorliegenden Dissertation wurden drei solcher Materialien hinsichtlich ihrer außergewöhnlichen elektronischen Eigenschaften untersucht. In NbP, einem Halbmetall mit komplex geformter, anisotroper Fermi-Fläche, welche aus mehreren räumlich entarteten Taschen besteht, wurden die Effekte der Gitterdeformation untersucht. Die Anwendung uniaxialer Spannung führt zur Brechung der Kristallsymmetrie und damit zur Aufhebung der räumlichen Entartung der Fermi-Taschen, was mittels Analyse der Shubnikov-de Haas-Oszillationen im Magnetwiderstand nachgewiesen werden konnte. Weiterhin konnte durch Messung der im Ultraschall auftretenden Quantenoszillationen eine genaue Untersuchung der Anisotropie der Elektron-Phonon-Wechselwirkung durchgeführt werden. ZrTe5 ist ein aus zweidimensionalen Schichten bestehender Halbleiter mit geringer Bandlücke, welcher kürzlich aufgrund seiner besonderen Niedrigtemperatur-Magnetotransporteigenschaften größere Aufmerksamkeit erfahren hat. So weist ZrTe5 plateau-ähnliche Features im Hall-Widerstand, sowie einen ungewöhnlichen Magnet- und Hall-Widerstand im Quanten-Limit auf. Im Rahmen dieser Arbeit wurde der Effekt uniaxialer Spannung auf diese Transportphänomene untersucht, was dazu beitragen kann, deren bislang umstrittene Ursache aufzuklären. Schließlich wurden die elektrischen und thermischen Magnetotransporteigenschaften von GdPtBi untersucht, einem Halbleiter mit geschlossener Bandlücke, welcher sich durch das Vorliegen starker, lokalisierter magnetischer Momente ausgehend von den 4f-Elektronen des Gd auszeichnet. Es konnte gezeigt werden, dass das Auftreten von Anomalien im elektrischen Magnetotransport, welche ursprünglich den topologischen Eigenschaften der im Magnetfeld gekreuzten elektronischen Bänder zugeschrieben wurden, auch durch magnetische Wechselwirkungen zu erklären ist. Desweiteren konnte durch die Messung magnetfeldabhängiger thermischer Transporteigenschaften das Auftreten von Wechselwirkungen zwischen Phononen und magnetischen Momenten, sowie möglicherweise auch magnetischen Spinwellen, nachgewiesen werden. / Materials with a low, but finite density of charge carriers offer an interesting experimental platform for the investigation of electronic low-energy excitations. Such semimetals and narrow-gap semiconductors exhibit large magnetic-field responses, e.g., quantum oscillations (QOs) and magnetoresistance (MR) effects, that can be used as a powerful tool to study the electronic properties. In combination with experimental techniques such as electrical- and thermal-transport measurements, uniaxial-stress application, and measurement of the ultrasound velocity, a lot can be learned about the interactions and symmetry dependences in the materials. Recently, the topological properties of electronic bands became an important research field in condensed matter physics. Especially in semimetals and narrow-gap semiconductors, it is to be clarified to what extent exotic transport phenomena are related to topological effects. In this thesis, three such materials with intriguing electronic properties have been investigated. In NbP, a semimetal with a complex, anisotropic Fermi surface, consisting of spatially degenerate pockets whose degeneracy is tied to the symmetry of the crystal lattice, the effects of lattice deformation have been studied. Application of uniaxial stress breaks the crystalline symmetries and, thereby, lifts the degeneracy of the Fermi-surface pockets, which could be traced via analyzing Shubnikov-de Haas oscillations in the MR. Furthermore, the measurement of QOs in the ultrasound allowed for a detailed analysis of the anisotropy of the electron-phonon interaction in NbP. ZrTe5 is a layered narrow-gap semiconductor that recently attracted a lot of attention due to its remarkable low-temperature magnetotransport, namely plateau-like features in the Hall resistance as well as unconventionalMRand Hall resistance in the quantum limit. Here, the uniaxial-stress response of those features was investigated as a contribution to clarify their origin, which, to date, remains under discussion. Lastly, the electrical and thermal magnetotransport properties of GdPtBi were studied. GdPtBi is a zero-gap semiconductor that features the presence of large localized magnetic moments stemming from Gd’s 4 𝑓 -electron shell. The occurrence of anomalous features in the electrical MR was previously attributed to the topological properties of magnetic-field induced crossings of the electronic bands. However, in the course of this thesis it could be shown that those features can also be explained by magnetic interactions. Further, the presence of interactions between phonons and magnetic moments, and potentially also between phonons and magnetic spin waves, was demonstrated via measurement of a magnetic-field-dependent thermal resistance.

Page generated in 0.1457 seconds