1 |
Electronic, Optical and Magnetic Properties of Self-assembled Quantum Dots Containing Magnetic IonsTrojnar, Anna 10 June 2013 (has links)
There is currently interest in developing control over the spin of a single Manganese (Mn) ion, the atomic limit of magnetic memory, in semiconductor quantum dots (QDs). In this work we present theoretical results showing how one can manipulate the spin of Mn ion with light in a QD by engineering Mn-multi-exciton interactions through quantum interference, design of exciton and bi-exciton states and application of the magnetic field.
We develop a fully microscopic model of correlated exciton and bi-exciton interacting with the Mn ion. The electrons and heavy holes, confined in the QD, approximated as a two-dimensional harmonic oscillator (HO), interact via direct and short- and long-range exchange Coulomb interactions. The matrix elements of the exchange interaction are computed for the first time in the harmonic oscillator basis and for arbitrary magnetic fields.
The exciton and bi-exciton energies and states are computed using the configuration interaction method. The interaction between carriers and the Mn spin is accounted for by the Heisenberg electron-Mn and Ising hole-Mn exchange interactions.
For a single exciton confined in a magnetic dot, a novel quantum interference (QI) effect between the electron-hole Coulomb scattering and the scattering by Mn ion is obtained. The QI significantly affects the exciton-Mn coupling, modifying the splitting of the emission/absorption lines from the exciton-Mn complex depending on the degree of electronic correlations in the exciton state.
The second signature of the QI are the nonuniform energy gaps between the consecutive emission peaks due to the scattering of carriers by Mn among single-particle orbitals.
Magneto-photoluminescence experiments show that the coupling between the exciton and Mn ion does not change in the magnetic field. We report that electron-hole correlations counteract the magnetic squeezing of the single-particle wave functions strengthening the carrier-Mn interactions. As a result, the rate of change of the magneto-photoluminescence spectra with magnetic field is reduced as observed in the experiment.
We develop here for the first time a microscopic theory of bi-exciton-Mn complex, and report the presence of the fine structure of bi-exciton-Mn complex, even though as a spin-singlet it is expected to decouple from the localized spin.
Theoretical results are compared with experiments in Grenoble and Warsaw.
|
2 |
Electronic, Optical and Magnetic Properties of Self-assembled Quantum Dots Containing Magnetic IonsTrojnar, Anna January 2013 (has links)
There is currently interest in developing control over the spin of a single Manganese (Mn) ion, the atomic limit of magnetic memory, in semiconductor quantum dots (QDs). In this work we present theoretical results showing how one can manipulate the spin of Mn ion with light in a QD by engineering Mn-multi-exciton interactions through quantum interference, design of exciton and bi-exciton states and application of the magnetic field.
We develop a fully microscopic model of correlated exciton and bi-exciton interacting with the Mn ion. The electrons and heavy holes, confined in the QD, approximated as a two-dimensional harmonic oscillator (HO), interact via direct and short- and long-range exchange Coulomb interactions. The matrix elements of the exchange interaction are computed for the first time in the harmonic oscillator basis and for arbitrary magnetic fields.
The exciton and bi-exciton energies and states are computed using the configuration interaction method. The interaction between carriers and the Mn spin is accounted for by the Heisenberg electron-Mn and Ising hole-Mn exchange interactions.
For a single exciton confined in a magnetic dot, a novel quantum interference (QI) effect between the electron-hole Coulomb scattering and the scattering by Mn ion is obtained. The QI significantly affects the exciton-Mn coupling, modifying the splitting of the emission/absorption lines from the exciton-Mn complex depending on the degree of electronic correlations in the exciton state.
The second signature of the QI are the nonuniform energy gaps between the consecutive emission peaks due to the scattering of carriers by Mn among single-particle orbitals.
Magneto-photoluminescence experiments show that the coupling between the exciton and Mn ion does not change in the magnetic field. We report that electron-hole correlations counteract the magnetic squeezing of the single-particle wave functions strengthening the carrier-Mn interactions. As a result, the rate of change of the magneto-photoluminescence spectra with magnetic field is reduced as observed in the experiment.
We develop here for the first time a microscopic theory of bi-exciton-Mn complex, and report the presence of the fine structure of bi-exciton-Mn complex, even though as a spin-singlet it is expected to decouple from the localized spin.
Theoretical results are compared with experiments in Grenoble and Warsaw.
|
3 |
Comparison of Natural Organic Matter (NOM) Removal Processes on Disinfection Byproduct (DBP) Formation During Drinking Water TreatmentLess, John Ryan January 2010 (has links)
No description available.
|
4 |
HeT-SiC-05International Topical Workshop on Heteroepitaxy of 3C-SiC on Silicon and its Application to Sensor DevicesApril 26 to May 1, 2005,Hotel Erbgericht Krippen / Germany- Selected Contributions -Skorupa, Wolfgang, Brauer, Gerhard 31 March 2010 (has links) (PDF)
This report collects selected outstanding scientific and technological results obtained within the frame of the European project "FLASiC" (Flash LAmp Supported Deposition of 3C-SiC) but also other work performed in adjacent fields. Goal of the project was the production of large-area epitaxial 3C-SiC layers grown on Si, where in an early stage of SiC deposition the SiC/Si interface is rigorously improved by energetic electromagnetic radiation from purpose-built flash lamp equipment developed at Forschungszentrum Rossendorf. Background of this work is the challenging task for areas like microelectronics, biotechnology, or biomedicine to meet the growing demands for high-quality electronic sensors to work at high temperatures and under extreme environmental conditions. First results in continuation of the project work – for example, the deposition of the topical semiconductor material zinc oxide (ZnO) on epitaxial 3C-SiC/Si layers – are reported too.
|
5 |
HeT-SiC-05International Topical Workshop on Heteroepitaxy of 3C-SiC on Silicon and its Application to Sensor DevicesApril 26 to May 1, 2005,Hotel Erbgericht Krippen / Germany- Selected Contributions -Skorupa, Wolfgang, Brauer, Gerhard January 2005 (has links)
This report collects selected outstanding scientific and technological results obtained within the frame of the European project "FLASiC" (Flash LAmp Supported Deposition of 3C-SiC) but also other work performed in adjacent fields. Goal of the project was the production of large-area epitaxial 3C-SiC layers grown on Si, where in an early stage of SiC deposition the SiC/Si interface is rigorously improved by energetic electromagnetic radiation from purpose-built flash lamp equipment developed at Forschungszentrum Rossendorf. Background of this work is the challenging task for areas like microelectronics, biotechnology, or biomedicine to meet the growing demands for high-quality electronic sensors to work at high temperatures and under extreme environmental conditions. First results in continuation of the project work – for example, the deposition of the topical semiconductor material zinc oxide (ZnO) on epitaxial 3C-SiC/Si layers – are reported too.
|
Page generated in 0.0612 seconds