• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Processing of Noisy Controlled Source Audio Magnetotelluric (CSAMT) Data / Processering av brusiga magnetotelluriska mätningar med kontrollerad källa (CSAMT)

Fridlund, Julia January 2019 (has links)
Controlled Source Audio Magnetotellurics (CSAMT) is a geophysical method for characterizing the resistivity of the subsurface with the help of electromagnetic waves. The method is used for various purposes, such as geothermal- and hydrocarbon exploration, mineral prospecting and for investigation of groundwater resources. Electromagnetic fields are created by running an alternating current in a grounded electric dipole and by varying the frequency, different depths can be targeted. Orthogonal components of the electromagnetic fields are measured at receiver stations a few kilometers away from the source. From these field components, so called magnetotellurics transfer functions are estimated, which can be used to invert for the resistivity of the subsurface. The data used in this project is from a survey conducted in 2014 and 2016 in Kiruna by Uppsala University and the mining company LKAB. Measurements were made at 31 stations along two orthogonal profiles. The data have been processed earlier, but due to noise, especially in the lower frequencies, a significant part of the data set could not be inverted. The aim of this project was to improve the results by analyzing the data and testing different methods to remove noise. First, robust regression was used to account for possible non-Gaussian noise in the estimation of the magnetotelluric transfer functions. Except for one station on profile 1, the robust method did not improve the results, which suggests that the noise is mostly Gaussian. Then modified versions of least squares, each affected by a different bias, were used to estimate the transfer functions. Where there is more noise, the estimates should differ more due to their different biases. The estimates differed most for low frequencies and especially on the part of profile 2 that was measured in 2014. It was investigated whether the railway network could explain part of the low frequency noise. Measures were taken to reduce spectral leakage from the railway signal at 16 ⅔ Hz to the closest transmitter frequencies 14 Hz and 20 Hz, but no clear improvement was seen and more detailed studies need to be conducted to determine this matter. Finally, a method based on comparing the ratio of short-term and long-term averages was tested to remove transients in the measured time series of the electromagnetic field components. This proved difficult to implement due to the variability of the time series’ behavior between different stations, frequencies and field components. However, the method showed some potential for stations 9 and 10 on profile 1, and could probably be developed further to remove transients more efficiently and thus improve the data. / Magnetotellurik med kontrollerad källa (förkortat CSAMT på engelska) är en metod där elektromagnetiska fält används för att undersöka markens resistivitet. Resisitivitet är ett mått på hur bra eller dåligt marken leder elektriska strömmar. Metoden används till exempel för att mäta djupet till berggrunden, som oftast har högre resistivitet (sämre ledningsförmåga) än marken ovanför. Man kan också hitta metaller, så som guld och koppar, vilka har väldigt låg resistivitet (bra ledningsförmåga). Elektromagnetiska vågor skapas genom att man låter en växelström gå igenom en lång ledning. Vågorna färdas först genom luften och sen ner i marken. Hur djupt ner de når beror på växelströmmens frekvens; med låga frekvenser når vågorna djupare ner i marken än med höga. Under markytan inducerar de elektromagnetiska vågorna elektriska strömmar, så kallade telluriska strömmar (dvs. jordströmmar). Strömmarna blir svagare ju längre de färdas och hur snabbt de avtar i styrka beror på jordens resistivitet. Strömmarna skapar också nya elektriska och magnetiska fält som färdas tillbaka mot ytan. Vid markytan mäter man fältens styrka för olika frekveser, vilket då ger information om resistiviteten på olika djup. Från mätningarna tar man ofta fram så kallade magnetotelluriska överföringsfunktioner. Dessa överföringsfunktioner gör det lättare att tolka datan och ta reda på resistiviteten hos marken. I detta projekt har CSAMT-data använts från en undersökning i Kiruna som genomfördes av Uppsala Universitet och gruvföretaget LKAB. Datan har bearbetats tidigare, men på grund av mycket brus i mätningarna blev inte resultatet så bra som väntat. Brus kan komma från allt som genererar elektromagnetiska fält, till exempel elledningar, tågledningar eller naturliga variationer i jordens egna magnetfält. Målet med projektet var att förbättra resultatet genom att analysera datan och testa olika metoder för att ta bort brus. Den vanligaste metoden för att beräkna överföringsfunktionerna antar att det magnetiska fältet är fritt från brus. Detta är inte nödvändigtvis sant och kan leda till bias, alltså ett snedvridet resultat. Andra sätt att beräkna överföringsfunktionerna på ger olika bias. Det här kan man utnyttja för att se hur mycket brus som finns i datan. Om det inte finns något brus alls så blir alla överföringsfunktioner lika, medan om det finns mycket brus så skiljer de sig mer åt. På detta sätt upptäcktes att det var mer brus för frekvenserna 14 och 20 Hz (där 1 Hz är 1 svängning per sekund). En förklaring till det kan vara att tågledningar, som genererar elektromagnetiska fält med 16.67 Hz, ligger nära i frekvens och stör dessa signaler. För att minska brusets påverkan testades så kallad robust processering. Det innebär att man lägger mindre vikt vid de mätningar som tycks vara mycket annorlunda (alltså innehåller mer brus) från andra mätningar. Tyvärr så hjälpte inte denna strategi nämnvärt för att förbättra resultatet. Till sist tog vi fram en metod för att ta bort transienter, vilket är kortvarigt brus med hög intensitet. Transienter kan till exempel komma från åskblixtar, som ju är kortvariga elektriska urladdningar. Det visade sig dock att detta inte var helt enkelt, då det var svårt att se vad som var brus och vad som bara var naturliga variationer hos de elektromagnetiska fälten. Men i några fall kunde bruset urskiljas och därför verkar det troligt att fortsatt arbete med denna metod skulle kunna ge ännu bättre resultat.

Page generated in 0.0461 seconds