• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 3
  • Tagged with
  • 13
  • 9
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a three-dimensional all-at-once inversion approach for the magnetotelluric method

Wilhelms, Wenke 27 July 2016 (has links) (PDF)
A three-dimensional inversion was implemented for magnetotellurics, which is a passive electromagnetic method in geophysics. It exploits natural electromagnetic fields of the Earth, which function as sources. Their interaction with the conductive parts of the subsurface are registered when components of the electric and the magnetic field are measured and evaluated. The all-at-once approach is an inversion scheme that is relatively new to geophysics. In this approach, the objective function – the basis of each inversion – is called the Lagrangian. It consists of three parts: (i) the data residual norm, (ii) the regularisation part, and (iii) the forward problem. The latter is the significant difference to conventional inversion approaches that are built up of a forward calculation part and an inversion part. In the case of all-at-once, the forward problem is incorporated in the objective function and is therefore already taken into account in each inversion iteration. Thus, an explicit forward calculation is obsolete. As an objective function, the Lagrangian shall reach a minimum and therefore its first and second derivatives are evaluated. Hence, the gradient of the Lagrangian and its Hessian are constituent parts of the KKT system – the Newton-type system that is set up in the all-at-once inversion. Conventional inversion approaches avoid the Hessian because it is a large, dense, not positive definite matrix that is challenging to handle. However, it provides additional information to the inversion, which raises hope for a high quality inversion result. As a first step, the inversion was programmed for the more straightforward one-dimensional magnetotelluric case. This was particularly suitable to become familiar with sQMR – a Krylov subspace method which is essential for the three-dimensional case to be able to work with the Hessian and the resulting KKT system. After the implementation and validation of the one-dimensional forward operator, the Lagrangian and its derivatives were set up to complete the inversion, which successfully solved the KKT system. Accordingly, the three-dimensional forward operator also needed to be implemented and validated, which was done using published data from the 3D-2 COMMEMI model. To realise the inversion, the Lagrangian was assembled and its first and second derivatives were validated with a test that exploits the Taylor expansion. Then, the inversion was initially programmed for the Gauss-Newton approximation where second order information is neglected. Since the system matrix of the Gauss-Newton approximation is positive definite, the solution of this system of equations could be carried out by the conventional solver pcg. Based on that, the complete KKT system (Newton\\\'s method) was set up and preconditioned sQMR solved this system of equations.
2

Two-dimensional constrained anisotropic inversion of magnetotelluric data

Chen, Xiaoming January 2012 (has links)
Tectonic and geological processes on Earth often result in structural anisotropy of the subsurface, which can be imaged by various geophysical methods. In order to achieve appropriate and realistic Earth models for interpretation, inversion algorithms have to allow for an anisotropic subsurface. Within the framework of this thesis, I analyzed a magnetotelluric (MT) data set taken from the Cape Fold Belt in South Africa. This data set exhibited strong indications for crustal anisotropy, e.g. MT phases out of the expected quadrant, which are beyond of fitting and interpreting with standard isotropic inversion algorithms. To overcome this obstacle, I have developed a two-dimensional inversion method for reconstructing anisotropic electrical conductivity distributions. The MT inverse problem represents in general a non-linear and ill-posed minimization problem with many degrees of freedom: In isotropic case, we have to assign an electrical conductivity value to each cell of a large grid to assimilate the Earth's subsurface, e.g. a grid with 100 x 50 cells results in 5000 unknown model parameters in an isotropic case; in contrast, we have the sixfold in an anisotropic scenario where the single value of electrical conductivity becomes a symmetric, real-valued tensor while the number of the data remains unchanged. In order to successfully invert for anisotropic conductivities and to overcome the non-uniqueness of the solution of the inverse problem it is necessary to use appropriate constraints on the class of allowed models. This becomes even more important as MT data is not equally sensitive to all anisotropic parameters. In this thesis, I have developed an algorithm through which the solution of the anisotropic inversion problem is calculated by minimization of a global penalty functional consisting of three entries: the data misfit, the model roughness constraint and the anisotropy constraint. For comparison, in an isotropic approach only the first two entries are minimized. The newly defined anisotropy term is measured by the sum of the square difference of the principal conductivity values of the model. The basic idea of this constraint is straightforward. If an isotropic model is already adequate to explain the data, there is no need to introduce electrical anisotropy at all. In order to ensure successful inversion, appropriate trade-off parameters, also known as regularization parameters, have to be chosen for the different model constraints. Synthetic tests show that using fixed trade-off parameters usually causes the inversion to end up by either a smooth model with large RMS error or a rough model with small RMS error. Using of a relaxation approach on the regularization parameters after each successful inversion iteration will result in smoother inversion model and a better convergence. This approach seems to be a sophisticated way for the selection of trade-off parameters. In general, the proposed inversion method is adequate for resolving the principal conductivities defined in horizontal plane. Once none of the principal directions of the anisotropic structure is coincided with the predefined strike direction, only the corresponding effective conductivities, which is the projection of the principal conductivities onto the model coordinate axes direction, can be resolved and the information about the rotation angles is lost. In the end the MT data from the Cape Fold Belt in South Africa has been analyzed. The MT data exhibits an area (> 10 km) where MT phases over 90 degrees occur. This part of data cannot be modeled by standard isotropic modeling procedures and hence can not be properly interpreted. The proposed inversion method, however, could not reproduce the anomalous large phases as desired because of losing the information about rotation angles. MT phases outside the first quadrant are usually obtained by different anisotropic anomalies with oblique anisotropy strike. In order to achieve this challenge, the algorithm needs further developments. However, forward modeling studies with the MT data have shown that surface highly conductive heterogeneity in combination with a mid-crustal electrically anisotropic zone are required to fit the data. According to known geological and tectonic information the mid-crustal zone is interpreted as a deep aquifer related to the fractured Table Mountain Group rocks in the Cape Fold Belt. / Tektonische und geologische Prozesse verursachen häufig eine strukturelle Anisotropie des Untergrundes, welche von verschiedenen geophysikalischen Methoden beobachtet werden kann. Zur Erstellung und Interpretation geeigneter, realistischer Modelle der Erde sind Inversionsalgorithmen notwendig, die einen anisotropen Untergrund einbeziehen können. Für die vorliegende Arbeit habe ich einen magnetotellurischen (MT) Datensatz vom Cape Fold Gürtel in Südafrika untersucht. Diese Daten weisen auf eine ausgeprägte Anisotropie der Kruste hin, da z.B. die MT Phasen außerhalb des erwarteten Quadranten liegen und nicht durch standardisierte isotrope Inversionsalgorithmen angepasst und ausgewertet werden können. Um dieses Problem zu beheben, habe ich eine zweidimensionale Inversionsmethode entwickelt, welche eine anisotrope elektrische Leitfähigkeitsverteilungen in den Modellen zulässt. Die MT Inversion ist im allgemeinen ein nichtlineares, schlecht gestelltes Minimierungsproblem mit einer hohen Anzahl an Freiheitsgraden. Im isotropen Fall wird jeder Gitterzelle eines Modells ein elektrischer Leitfähigkeitswert zugewiesen um den Erduntergrund nachzubilden. Ein Modell mit beispielsweise 100 x 50 Zellen besitzt 5000 unbekannte Modellparameter. Im Gegensatz dazu haben wir im anisotropen Fall die sechsfache Anzahl, da hier aus dem einfachen Zahlenwert der elektrischen Leitfähigkeit ein symmetrischer, reellwertiger Tensor wird, wobei die Anzahl der Daten gleich bleibt. Für die erfolgreiche Inversion von anisotropen Leitfähigkeiten und um die Nicht-Eindeutigkeit der Lösung des inversen Problems zu überwinden, ist eine geeignete Einschränkung der möglichen Modelle absolut notwendig. Dies wird umso wichtiger, da die Sensitivität von MT Daten nicht für alle Anisotropieparameter gleich ist. In der vorliegenden Arbeit habe ich einen Algorithmus entwickelt, welcher die Lösung des anisotropen Inversionsproblems unter Minimierung einer globalen Straffunktion berechnet. Diese besteht aus drei Teilen: der Datenanpassung, den Zusatzbedingungen an die Glätte des Modells und die Anisotropie. Im Gegensatz dazu werden beim isotropen Fall nur die ersten zwei Parameter minimiert. Der neu definierte Anisotropieterm wird mit Hilfe der Summe der quadratischen Abweichung der Hauptleitfähigkeitswerte des Modells gemessen. Die grundlegende Idee dieser Zusatzbedingung ist einfach. Falls ein isotropes Modell die Daten ausreichend gut anpassen kann, wird keine elektrische Anisotropie zusätzlich in das Modell eingefügt. Um eine erfolgreiche Inversion zu garantieren müssen geeignete Regularisierungsparameter für die verschiedenen Nebenbedingungen an das Modell gewählt werden. Tests mit synthetischen Modellen zeigen, dass bei festgesetzten Regularisierungsparametern die Inversion meistens entweder in einem glatten Modell mit hohem RMS Fehler oder einem groben Modell mit kleinem RMS Fehler endet. Die Anwendung einer Relaxationsbedingung auf die Regularisierung nach jedem Iterationsschritt resultiert in glatteren Inversionsmodellen und einer höheren Konvergenz und scheint ein ausgereifter Weg zur Wahl der Parameter zu sein. Die vorgestellte Inversionsmethode ist im allgemeinen in der Lage die Hauptleitfähigkeiten in der horizontalen Ebene zu finden. Wenn keine der Hauptrichtungen der Anisotropiestruktur mit der vorgegebenen Streichrichtung übereinstimmt, können nur die dazugehörigen effektiven Leitfähigkeiten, welche die Projektion der Hauptleitfähigkeiten auf die Koordinatenachsen des Modells darstellen, aufgelöst werden. Allerdings gehen die Informationen über die Rotationswinkel verloren. Am Ende meiner Arbeit werden die MT Daten des Cape Fold Gürtels in Südafrika analysiert. Die MT Daten zeigen in einem Abschnitt des Messprofils (> 10 km) Phasen über 90 Grad. Dieser Teil der Daten kann nicht mit herkömmlichen isotropen Modellierungsverfahren angepasst und daher mit diesen auch nicht vollständig ausgewertet werden. Die vorgestellte Inversionsmethode konnte die außergewöhnlich hohen Phasenwerte nicht wie gewünscht im Inversionsergebnis erreichen, was mit dem erwähnten Informationsverlust der Rotationswinkel begründet werden kann. MT Phasen außerhalb des ersten Quadranten können für gewöhnlich bei Anomalien mit geneigter Streichrichtung der Anisotropie gemessen werden. Um diese auch in den Inversionsergebnissen zu erreichen ist eine Weiterentwicklung des Algorithmus notwendig. Vorwärtsmodellierungen des MT Datensatzes haben allerdings gezeigt, dass eine hohe Leitfähigkeitsheterogenität an der Oberfläche in Kombination mit einer Zone elektrischer Anisotropie in der mittleren Kruste notwendig sind um die Daten anzupassen. Aufgrund geologischer und tektonischer Informationen kann diese Zone in der mittleren Kruste als tiefer Aquifer interpretiert werden, der im Zusammenhang mit den zerrütteten Gesteinen der Table Mountain Group des Cape Fold Gürtels steht.
3

Combined structural and magnetotelluric investigation across the West Fault Zone in northern Chile

Hoffmann-Rothe, Arne January 2002 (has links)
Untersuchungen zur internen Architektur von großen Störungszonen beschränken sich üblicherweise auf die, an der Erdoberfläche aufgeschlossene, störungsbezogene Deformation. Eine Methode, die es ermöglicht, Informationen über die Tiefenfortsetzung einer Störung zu erhalten, ist die Abbildung der elektrischen Leitfähigkeit des Untergrundes.<br /> <br /> Die vorliegende Arbeit beschäftigt sich mit der kombinierten strukturgeologischen und magnetotellurischen Untersuchung eines Segmentes der 'West Fault'-Störung in den nordchilenischen Anden. Die West Fault ist ein Abschnitt des über 2000 km langen Präkordilleren-Störungssystem, welches im Zusammenhang mit der Subduktion vor der südamerikanischen Westküste entstanden ist. Die Aktivität dieses Störungssystems reichte vom Eozän bis in das Quartär. Der Verlauf der West Fault ist im Untersuchungsgebiet (22&#176;04'S, 68&#176;53'W) an der Oberfläche klar definiert und weist über viele zehner Kilometer eine konstante Streichrichtung auf. Die Aufschlussbedingungen und die Morphologie des Arbeitsgebietes sind ideal für kombinierte Untersuchungen der störungsbezogenen Deformation und der elektrischen Leitfähigkeit des Untergrundes mit Hilfe magnetotellurischer Experimente (MT) und der erdmagnetischen Tiefensondierung (GDS). Ziel der Untersuchungen war es, eine mögliche Korrelation der beiden Meßmethoden herauszuarbeiten, und die interne Störungsarchitektur der West Fault umfassend zu beschreiben.<br /> <br /> Die Interpretation von Sprödbruch-Strukturen (kleinmaßstäbliche Störungen sowie Störungsflächen mit/ohne Bewegungslineationen) im Untersuchungsgebiet weist auf überwiegend seitenverschiebende Deformation entlang von subvertikal orientierten Scherflächen hin. Dextrale und sinistrale Bewegungsrichtungen können innerhalb der Störungszone bestätigt werden, was auf Reaktivierungen des Störungssystems schliessen läßt. Die jüngsten Deformationen im Arbeitsgebiet haben dehnenden Charakter, wobei die kinematische Analyse eine unterschiedliche Orientierung der Extensionsrichtung beiderseits der Störung andeutet. Die Bruchflächendichte nimmt mit Annäherung an die Störung zu und zeichnet einen etwa 1000 m breiten Bereich erhöhter Deformationsintensität um die Störungsspur aus (damage zone). Im Zentrum dieser Zone weist das Gestein eine intensive Alteration und Brekzierung auf, die sich über eine Breite von etwa 400 m erstreckt. Kleine Störungen und Scherflächen in diesem zentralen Abschnitt der Störung fallen überwiegend steil nach Osten ein (70-80&#176;).<br /> <br /> Innerhalb desselben Arbeitsgebietes wurde ein 4 km langes MT/GDS Profil vermessen, welches senkrecht zum Streichen der West Fault verläuft. Für die zentralen 2 km dieses Hauptprofils beträgt der Abstand der Meßstationen jeweils 100 m. Ein weiteres Profil, bestehend aus 9 Stationen mit einem Abstand von 300 m zueinander, quert die Störung einige Kilometer entfernt vom eigentlichen Arbeitsgebiet. Die Aufzeichnung der Daten erfolgte mit vier S.P.A.M MkIII Apparaturen in einem Frequenzbereich von 1000 Hz bis 0.001 Hz.<br /> <br /> In den GDS Daten beider Profile ist die Störung für Frequenzen >1 Hz deutlich abgebildet: Die Induktionspfeile kennzeichnen eine mehrere hundert Meter breite Zone erhöhter Leitfähigkeit, welche sich entlang der West Fault erstreckt. Die Dimensionalitätsanalyse der MT Daten rechtfertigt die Anpassung der gemessenen Daten mit einem zwei-dimensionalen Modell für einen Frequenzbereich von 1000 Hz bis 0.1 Hz. In diesem Frequenzbereich, der eine Auflösung der Leitfähigkeitsstruktur bis mindestens 5 km Tiefe ermöglicht, läßt sich eine regionale geoelektrische Streichrichtung parallel zum Verlauf der West Fault nachweisen.<br /> <br /> Die Modellierung der MT Daten beruht auf einem Inversionsalgorithmus von Mackie et al. (1997). Leitfähigkeitsanomalien, die sich aus der Inversions-Modellierung ergeben, werden anhand von empirischen Sensitivitätsstudien auf ihre Robustheit überprüft. Dabei werden die Eigenschaften (Geometrie, Leitfähigkeit) der Strukturen systematisch variiert und sowohl Vorwärts- als auch Inversionsrechnungen der modifizierten Modelle durchgeführt. Die jeweiligen Modellergebnisse werden auf ihre Konsistenz mit dem Ausgangsdatensatz überprüft. Entlang beider MT Profile wird ein guter elektrischer Leiter im zentralen Abschnitt der West Fault aufgelöst, wobei die Bereiche erhöhter Leitfähigkeit östlich der Störungsspur liegen. Für das dicht vermessene MT Profil ergibt sich eine Breite des Störungsleiters von etwa 300 m sowie ein steiles Einfallen der Anomalie nach Osten (70&#176;). Der Störungsleiter reicht bis in eine Tiefe von mindestens 1100 m, während die Modellierungsstudien auf eine maximale Tiefenerstreckung <2000 m hinweisen. Das Profil zeigt weitere leitfähige Anomalien, deren Geometrie aber weniger genau aufgelöst ist.<br /> <br /> Die Störungsleiter der beiden MT Profile stimmen in ihrer Position mit der Alterationszone überein. Im zentralen Bereich des Hauptprofils korreliert darüber hinaus das Einfallen der Sprödbruch-Strukturen und der Leitfähigkeitsanomalie. Dies weist darauf hin, daß die Erhöhung der Leitfähigkeit im Zusammenhang mit einem Netzwerk von Bruchstrukturen steht, welches mögliche Wegsamkeiten für Fluide bietet. Der miteinander in Verbindung stehende Gesteins-Porenraum, der benötigt wird, um die gemessene Erhöhung der Leitfähigkeit durch Fluide im Gestein zu erklären, kann anhand der Salinität einiger Grundwasserproben abgeschätzt werden (Archies Gesetz). Wasserproben aus größerer Tiefe, weisen aufgrund intensiverer Fluid-Gesteins-Wechselwirkung eine höhere Salinität, und damit eine verbesserte Leitfähigkeit, auf. Für eine Probe aus einer Tiefe von 200 m ergibt sich demnach eine benötigte Porosität im Bereich von 0.8% - 4%. Dies legt nahe, daß Wässer, die von der Oberfläche in die Bruchzone der Störung eindringen, ausreichen, um die beobachtete Leitfähigkeitserhöhung zu erklären. Diese Deutung wird von der geochemischen Signatur von Gesteinsproben aus dem Alterationsbereich bestätigt, wonach die Alteration in einem Regime niedriger Temperatur (<95&#176;C) stattfand. Der Einfluß von aufsteigenden Tiefenwässern wurde hier nicht nachgewiesen. Die geringe Tiefenerstreckung des Störungsleiters geht wahrscheinlich auf Verheilungs- und Zementationsprozesse der Bruchstrukturen zurück, die aufgrund der Lösung und Fällung von Mineralen in größerer Tiefe, und damit bei erhöhter Temperatur, aktiv sind.<br /> <br /> Der Vergleich der Untersuchungsergebnisse der zur Zeit seismisch inaktiven West Fault mit veröffentlichten Studien zur elektrischen Leitfähigkeitsstruktur der aktiven San Andreas Störung, deutet darauf hin, daß die Tiefenerstreckung und die Leitfähigkeit von Störungsleitern eine Funktion der Störungsaktivität ist. Befindet sich eine Störung in einem Stadium der Deformation, so bleibt das Bruchnetzwerk für Fluide permeabel und verhindert die Versiegelung desselben. / The characterisation of the internal architecture of large-scale fault zones is usually restricted to the outcrop-based investigation of fault-related structural damage on the Earth's surface. A method to obtain information on the downward continuation of a fault is to image the subsurface electrical conductivity structure.<br /> <br /> This work deals with such a combined investigation of a segment of the West Fault, which itself is a part of the more than 2000 km long trench-linked Precordilleran Fault System in the northern Chilean Andes. Activity on the fault system lasted from Eocene to Quaternary times. In the working area (22&#176;04'S, 68&#176;53'W), the West Fault exhibits a clearly defined surface trace with a constant strike over many tens of kilometers. Outcrop condition and morphology of the study area allow ideally for a combination of structural geology investigation and magnetotelluric (MT) / geomagnetic depth sounding (GDS) experiments. The aim was to achieve an understanding of the correlation of the two methods and to obtain a comprehensive view of the West Fault's internal architecture.<br /> <br /> Fault-related brittle damage elements (minor faults and slip-surfaces with or without striation) record prevalent strike-slip deformation on subvertically oriented shear planes. Dextral and sinistral slip events occurred within the fault zone and indicate reactivation of the fault system. Youngest deformation increments mapped in the working area are extensional and the findings suggest a different orientation of the extension axes on either side of the fault. Damage element density increases with approach to the fault trace and marks an approximately 1000 m wide damage zone around the fault. A region of profound alteration and comminution of rocks, about 400 m wide, is centered in the damage zone. Damage elements in this central part are predominantly dipping steeply towards the east (70-80&#176;).<br /> <br /> Within the same study area, the electrical conductivity image of the subsurface was measured along a 4 km long MT/GDS profile. This main profile trends perpendicular to the West Fault trace. The MT stations of the central 2 km were 100 m apart from each other. A second profile with 300 m site spacing and 9 recording sites crosses the fault a few kilometers away from the main study area. Data were recorded in the frequency range from 1000 Hz to 0.001 Hz with four real time instruments S.P.A.M. MkIII.<br /> <br /> The GDS data reveal the fault zone for both profiles at frequencies above 1 Hz. Induction arrows indicate a zone of enhanced conductivity several hundred meters wide, that aligns along the WF strike and lies mainly on the eastern side of the surface trace. A dimensionality analysis of the MT data justifies a two dimensional model approximation of the data for the frequency range from 1000 Hz to 0.1 Hz. For this frequency range a regional geoelectric strike parallel to the West Fault trace could be recovered. The data subset allows for a resolution of the conductivity structure of the uppermost crust down to at least 5 km.<br /> <br /> Modelling of the MT data is based on an inversion algorithm developed by Mackie et al. (1997). The features of the resulting resistivity models are tested for their robustness using empirical sensitivity studies. This involves variation of the properties (geometry, conductivity) of the anomalies, the subsequent calculation of forward or constrained inversion models and check for consistency of the obtained model results with the data. A fault zone conductor is resolved on both MT profiles. The zones of enhanced conductivity are located to the east of the West Fault surface trace. On the dense MT profile, the conductive zone is confined to a width of about 300 m and the anomaly exhibits a steep dip towards the east (about 70&#176;). Modelling implies that the conductivity increase reaches to a depth of at least 1100 m and indicates a depth extent of less than 2000 m. Further conductive features are imaged but their geometry is less well constrained.<br /> <br /> The fault zone conductors of both MT profiles coincide in position with the alteration zone. For the dense profile, the dip of the conductive anomaly and the dip of the damage elements of the central part of the fault zone correlate. This suggests that the electrical conductivity enhancement is causally related to a mesh of minor faults and fractures, which is a likely pathway for fluids. The interconnected rock-porosity that is necessary to explain the observed conductivity enhancement by means of fluids is estimated on the basis of the salinity of several ground water samples (Archie's Law). The deeper the source of the water sample, the more saline it is due to longer exposure to fluid-rock interaction and the lower is the fluid's resistivity. A rock porosity in the range of 0.8% - 4% would be required at a depth of 200 m. That indicates that fluids penetrating the damaged fault zone from close to the surface are sufficient to explain the conductivity anomalies. This is as well supported by the preserved geochemical signature of rock samples in the alteration zone. Late stage alteration processes were active in a low temperature regime (<95&#176;C) and the involvement of ascending brines from greater depth is not indicated. The limited depth extent of the fault zone conductors is a likely result of sealing and cementation of the fault fracture mesh due to dissolution and precipitation of minerals at greater depth and increased temperature.<br /> <br /> Comparison of the results of the apparently inactive West Fault with published studies on the electrical conductivity structure of the currently active San Andreas Fault, suggests that the depth extent and conductivity of the fault zone conductor may be correlated to fault activity. Ongoing deformation will keep the fault/fracture mesh permeable for fluids and impede cementation and sealing of fluid pathways.
4

Three-dimensional finite element simulation of magnetotelluric fields on unstructured grids

Franke-Börner, Antje 05 June 2013 (has links) (PDF)
In der vorliegenden Arbeit werden verschiedene Randwertprobleme zur Beschreibung der Ausbreitung magnetotellurischer Felder mit Hilfe der Finite-Elemente-Methode numerisch gelöst. Die zwei- und dreidimensionalen Randwertprobleme zur Simulation des elektrischen oder des magnetischen Feldes, des magnetischen Vektorpotentials und des elektrischen Skalarpotentials, des magnetischen Vektorpotentials allein oder des anomalen magnetischen Vektorpotentials werden aus den Maxwell-Gleichungen hergeleitet. Auf Grundlage von Anwendung der Konvergenztheorie auf die Finite-Elemente-Lösung werden Konvergenzstudien für zweidimensionale Modelle des homogenen und des geschichteten Halbraums sowie für das dreidimensionale COMMEMI 3-D-2-Modell durchgeführt. Diese werden genutzt, um die Randwertprobleme hinsichtlich ihrer Effizienz zu bewerten. Außerdem liefern Konvergenzstudien eine Abschätzung des lokalen Fehlers der numerischen Lösung für ein realitätsnahes Modell des Vulkans Stromboli und seiner Umgebung, welches digitale Geländedaten enthält. / This thesis presents the numerical finite-element solution of different formulations of the magnetotelluric boundary value problem. Based on Maxwell\'s equations, the two-dimensional and three-dimensional boundary value problems are derived in terms of the electric or the magnetic field, the magnetic vector and the electric scalar potential, the magnetic vector potential only, or the anomalous magnetic vector potential. To evaluate their efficiency, convergence studies are performed for the two-dimensional models of the homogeneous and the layered halfspace as well as for the COMMEMI-3-D-2 model. Moreover, convergence studies yield estimates of the local error of the numerical solution for a close-to-reality model of Stromboli volcano incorporating digital terrain data.
5

Three-dimensional finite element simulation of magnetotelluric fields on unstructured grids: on the efficient formulation of the boundary value problem

Franke-Börner, Antje 26 April 2013 (has links)
In der vorliegenden Arbeit werden verschiedene Randwertprobleme zur Beschreibung der Ausbreitung magnetotellurischer Felder mit Hilfe der Finite-Elemente-Methode numerisch gelöst. Die zwei- und dreidimensionalen Randwertprobleme zur Simulation des elektrischen oder des magnetischen Feldes, des magnetischen Vektorpotentials und des elektrischen Skalarpotentials, des magnetischen Vektorpotentials allein oder des anomalen magnetischen Vektorpotentials werden aus den Maxwell-Gleichungen hergeleitet. Auf Grundlage von Anwendung der Konvergenztheorie auf die Finite-Elemente-Lösung werden Konvergenzstudien für zweidimensionale Modelle des homogenen und des geschichteten Halbraums sowie für das dreidimensionale COMMEMI 3-D-2-Modell durchgeführt. Diese werden genutzt, um die Randwertprobleme hinsichtlich ihrer Effizienz zu bewerten. Außerdem liefern Konvergenzstudien eine Abschätzung des lokalen Fehlers der numerischen Lösung für ein realitätsnahes Modell des Vulkans Stromboli und seiner Umgebung, welches digitale Geländedaten enthält. / This thesis presents the numerical finite-element solution of different formulations of the magnetotelluric boundary value problem. Based on Maxwell\'s equations, the two-dimensional and three-dimensional boundary value problems are derived in terms of the electric or the magnetic field, the magnetic vector and the electric scalar potential, the magnetic vector potential only, or the anomalous magnetic vector potential. To evaluate their efficiency, convergence studies are performed for the two-dimensional models of the homogeneous and the layered halfspace as well as for the COMMEMI-3-D-2 model. Moreover, convergence studies yield estimates of the local error of the numerical solution for a close-to-reality model of Stromboli volcano incorporating digital terrain data.
6

Development of a three-dimensional all-at-once inversion approach for the magnetotelluric method

Wilhelms, Wenke 21 June 2016 (has links)
A three-dimensional inversion was implemented for magnetotellurics, which is a passive electromagnetic method in geophysics. It exploits natural electromagnetic fields of the Earth, which function as sources. Their interaction with the conductive parts of the subsurface are registered when components of the electric and the magnetic field are measured and evaluated. The all-at-once approach is an inversion scheme that is relatively new to geophysics. In this approach, the objective function – the basis of each inversion – is called the Lagrangian. It consists of three parts: (i) the data residual norm, (ii) the regularisation part, and (iii) the forward problem. The latter is the significant difference to conventional inversion approaches that are built up of a forward calculation part and an inversion part. In the case of all-at-once, the forward problem is incorporated in the objective function and is therefore already taken into account in each inversion iteration. Thus, an explicit forward calculation is obsolete. As an objective function, the Lagrangian shall reach a minimum and therefore its first and second derivatives are evaluated. Hence, the gradient of the Lagrangian and its Hessian are constituent parts of the KKT system – the Newton-type system that is set up in the all-at-once inversion. Conventional inversion approaches avoid the Hessian because it is a large, dense, not positive definite matrix that is challenging to handle. However, it provides additional information to the inversion, which raises hope for a high quality inversion result. As a first step, the inversion was programmed for the more straightforward one-dimensional magnetotelluric case. This was particularly suitable to become familiar with sQMR – a Krylov subspace method which is essential for the three-dimensional case to be able to work with the Hessian and the resulting KKT system. After the implementation and validation of the one-dimensional forward operator, the Lagrangian and its derivatives were set up to complete the inversion, which successfully solved the KKT system. Accordingly, the three-dimensional forward operator also needed to be implemented and validated, which was done using published data from the 3D-2 COMMEMI model. To realise the inversion, the Lagrangian was assembled and its first and second derivatives were validated with a test that exploits the Taylor expansion. Then, the inversion was initially programmed for the Gauss-Newton approximation where second order information is neglected. Since the system matrix of the Gauss-Newton approximation is positive definite, the solution of this system of equations could be carried out by the conventional solver pcg. Based on that, the complete KKT system (Newton\\\'s method) was set up and preconditioned sQMR solved this system of equations.
7

Seismic structure of the Arava Fault, Dead Sea Transform

Maercklin, Nils January 2004 (has links)
Ein transversales Störungssystem im Nahen Osten, die Dead Sea Transform (DST), trennt die Arabische Platte von der Sinai-Mikroplatte und erstreckt sich von Süden nach Norden vom Extensionsgebiet im Roten Meer über das Tote Meer bis zur Taurus-Zagros Kollisionszone. Die sinistrale DST bildete sich im Miozän vor etwa 17 Ma und steht mit dem Aufbrechen des Afro-Arabischen Kontinents in Verbindung. Das Untersuchungsgebiet liegt im Arava Tal zwischen Totem und Rotem Meer, mittig über der Arava Störung (Arava Fault, AF), die hier den Hauptast der DST bildet.<br /> <br /> Eine Reihe seismischer Experimente, aufgebaut aus künstlichen Quellen, linearen Profilen über die Störung und entsprechend entworfenen Empfänger-Arrays, zeigt die Untergrundstruktur in der Umgebung der AF und der Verwerfungszone selbst bis in eine Tiefe von 3-4 km. Ein tomographisch bestimmtes Modell der seismischen Geschwindigkeiten von P-Wellen zeigt einen starken Kontrast nahe der AF mit niedrigeren Geschwindigkeiten auf der westlichen Seite als im Osten. Scherwellen lokaler Erdbeben liefern ein mittleres P-zu-S Geschwindigkeitsverhältnis und es gibt Anzeichen für Änderungen über die Störung hinweg. Hoch aufgelöste tomographische Geschwindigkeitsmodelle bestätigen der Verlauf der AF und stimmen gut mit der Oberflächengeologie überein. <br /> <br /> Modelle des elektrischen Widerstands aus magnetotellurischen Messungen im selben Gebiet zeigen eine leitfähige Schicht westlich der AF, schlecht leitendes Material östlich davon und einen starken Kontrast nahe der AF, die den Fluss von Fluiden von einer Seite zur anderen zu verhindern scheint. Die Korrelation seismischer Geschwindigkeiten und elektrischer Widerstände erlaubt eine Charakterisierung verschiedener Lithologien im Untergrund aus deren physikalischen Eigenschaften. Die westliche Seite lässt sich durch eine geschichtete Struktur beschreiben, wogegen die östliche Seite eher einheitlich erscheint. Die senkrechte Grenze zwischen den westlichen Einheiten und der östlichen scheint gegenüber der Oberflächenausprägung der AF nach Osten verschoben zu sein.<br /> <br /> Eine Modellierung von seismischen Reflexionen an einer Störung deutet an, dass die Grenze zwischen niedrigen und hohen Geschwindigkeiten eher scharf ist, sich aber durch eine raue Oberfläche auf der Längenskala einiger hundert Meter auszeichnen kann, was die Streuung seismischer Wellen begünstigte. Das verwendete Abbildungsverfahren (Migrationsverfahren) für seismische Streukörper basiert auf Array Beamforming und der Kohärenzanalyse P-zu-P gestreuter seismischer Phasen. Eine sorgfältige Bestimmung der Auflösung sichert zuverlässige Abbildungsergebnisse.<br /> <br /> Die niedrigen Geschwindigkeiten im Westen entsprechen der jungen sedimentären Füllung im Arava Tal, und die hohen Geschwindigkeiten stehen mit den dortigen präkambrischen Magmatiten in Verbindung. Eine 7 km lange Zone seismischer Streuung (Reflektor) ist gegenüber der an der Oberfläche sichtbaren AF um 1 km nach Osten verschoben und lässt sich im Tiefenbereich von 1 km bis 4 km abbilden. Dieser Reflektor markiert die Grenze zwischen zwei lithologischen Blöcken, die vermutlich wegen des horizontalen Versatzes entlang der DST nebeneinander zu liegen kamen. Diese Interpretation als lithologische Grenze wird durch die gemeinsame Auswertung der seismischen und magnetotellurischen Modelle gestützt. Die Grenze ist möglicherweise ein Ast der AF, der versetzt gegenüber des heutigen, aktiven Asts verläuft. Der Gesamtversatz der DST könnte räumlich und zeitlich auf diese beiden Äste und möglicherweise auch auf andere Störungen in dem Gebiet verteilt sein. / The Dead Sea Transform (DST) is a prominent shear zone in the Middle East. It separates the Arabian plate from the Sinai microplate and stretches from the Red Sea rift in the south via the Dead Sea to the Taurus-Zagros collision zone in the north. Formed in the Miocene about 17 Ma ago and related to the breakup of the Afro-Arabian continent, the DST accommodates the left-lateral movement between the two plates. The study area is located in the Arava Valley between the Dead Sea and the Red Sea, centered across the Arava Fault (AF), which constitutes the major branch of the transform in this region.<br /> <br /> A set of seismic experiments comprising controlled sources, linear profiles across the fault, and specifically designed receiver arrays reveals the subsurface structure in the vicinity of the AF and of the fault zone itself down to about 3-4 km depth. A tomographically determined seismic P velocity model shows a pronounced velocity contrast near the fault with lower velocities on the western side than east of it. Additionally, S waves from local earthquakes provide an average P-to-S velocity ratio in the study area, and there are indications for a variations across the fault. High-resolution tomographic velocity sections and seismic reflection profiles confirm the surface trace of the AF, and observed features correlate well with fault-related geological observations.<br /> <br /> Coincident electrical resistivity sections from magnetotelluric measurements across the AF show a conductive layer west of the fault, resistive regions east of it, and a marked contrast near the trace of the AF, which seems to act as an impermeable barrier for fluid flow. The correlation of seismic velocities and electrical resistivities lead to a characterisation of subsurface lithologies from their physical properties. Whereas the western side of the fault is characterised by a layered structure, the eastern side is rather uniform. The vertical boundary between the western and the eastern units seems to be offset to the east of the AF surface trace.<br /> <br /> A modelling of fault-zone reflected waves indicates that the boundary between low and high velocities is possibly rather sharp but exhibits a rough surface on the length scale a few hundreds of metres. This gives rise to scattering of seismic waves at this boundary. The imaging (migration) method used is based on array beamforming and coherency analysis of P-to-P scattered seismic phases. Careful assessment of the resolution ensures reliable imaging results.<br /> <br /> The western low velocities correspond to the young sedimentary fill in the Arava Valley, and the high velocities in the east reflect mainly Precambrian igneous rocks. A 7 km long subvertical scattering zone reflector is offset about 1 km east of the AF surface trace and can be imaged from 1 km to about 4 km depth. The reflector marks the boundary between two lithological blocks juxtaposed most probably by displacement along the DST. This interpretation as a lithological boundary is supported by the combined seismic and magnetotelluric analysis. The boundary may be a strand of the AF, which is offset from the current, recently active surface trace. The total slip of the DST may be distributed spatially and in time over these two strands and possibly other faults in the area.
8

Langperiodische magnetotellurische Messungen auf der oberflächennahen Leitfähigkeitsanomalie in der Münchberger Masse: Hinweise auf eine graphitisierte Überschiebungsfläche durch dreidimensionale Modellrechnungen / Longperiod magnetotelluric measurements on the near-surface conductivity anomaly of the Münchberg Massif: Evidence for a graphitized thrust plane achieved by threedimensional modelling

Schneider, Edgar 29 January 2002 (has links)
No description available.
9

Large scale resistivity surveys combining magnetic and magnetotelluric observations / Examples from central Australia / Großräumige Leitfähigkeitsstudien mittels Kombination magnetischer und magnetotellurischer Untersuchungen / Beispiele aus Zentralaustralien

Hanekop, Ole 24 July 2006 (has links)
No description available.
10

Elektromagnetische Arraymessungen im Rheinischen Schiefergebirge: Modelle der elektrischen Leitfähigkeit der Erdkruste und des oberen Mantels mit Verbindungen zum Eifelvulkanismus

Leibecker, Jörg 20 April 2000 (has links)
No description available.

Page generated in 0.0625 seconds