Spelling suggestions: "subject:"makes's""
1 |
Tools for the Design of Reliable and Efficient Functions Evaluation Libraries / Outils pour la conception de bibliothèques de calcul de fonctions efficaces et fiablesTorres, Serge 22 September 2016 (has links)
La conception des bibliothèques d’évaluation de fonctions est un activité complexe qui requiert beaucoup de soin et d’application, particulièrement lorsque l’on vise des niveaux élevés de fiabilité et de performances. En pratique et de manière habituelle, on ne peut se livrer à ce travail sans disposer d’outils qui guident le concepteur dans le dédale d’un espace de solutions étendu et complexe mais qui lui garantissent également la correction et la quasi-optimalité de sa production. Dans l’état actuel de l’art, il nous faut encore plutôt raisonner en termes de « boite à outils » d’où le concepteur doit tirer et combiner des mécanismes de base, au mieux de ses objectifs, plutôt qu’imaginer que l’on dispose d’un dispositif à même de résoudre automatiquement tous les problèmes.Le présent travail s’attache à la conception et la réalisation de tels outils dans deux domaines:∙ la consolidation du test d’arrondi de Ziv utilisé, jusqu’à présent de manière plus ou moins empirique, dans l’implantation des approximations de fonction ;∙ le développement d’une implantation de l’algorithme SLZ dans le but de résoudre le « Dilemme du fabricant de table » dans le cas de fonctions ayant pour opérandes et pour résultat approché des nombres flottants en quadruple précision (format Binary64 selon la norme IEEE-754). / The design of function evaluation libraries is a complex task that requires a great care and dedication, especially when one wants to satisfy high standards of reliability and performance. In actual practice, it cannot be correctly performed, as a routine operation, without tools that not only help the designer to find his way in a complex and extended solution space but also to guarantee that his solutions are correct and (almost) optimal. As of the present state of the art, one has to think in terms of “toolbox” from which he can smartly mix-and-match the utensils that fit better his goals rather than expect to have at hand a solve-all automatic device.The work presented here is dedicated to the design and implementation of such tools in two realms:∙ the consolidation of Ziv’s rounding test that is used, in a more or less empirical way, for the implementation of functions approximation;∙ the development of an implementation of the SLZ-algorithm in order to solve the Table Maker Dilemma for the function with quad-precision floating point (IEEE-754 Binary128 format) arguments and images.
|
2 |
Contributions à la vérification formelle d'algorithmes arithmétiques / Contributions to the Formal Verification of Arithmetic AlgorithmsMartin-Dorel, Erik 26 September 2012 (has links)
L'implantation en Virgule Flottante (VF) d'une fonction à valeurs réelles est réalisée avec arrondi correct si le résultat calculé est toujours égal à l'arrondi de la valeur exacte, ce qui présente de nombreux avantages. Mais pour implanter une fonction avec arrondi correct de manière fiable et efficace, il faut résoudre le «dilemme du fabricant de tables» (TMD en anglais). Deux algorithmes sophistiqués (L et SLZ) ont été conçus pour résoudre ce problème, via des calculs longs et complexes effectués par des implantations largement optimisées. D'où la motivation d'apporter des garanties fortes sur le résultat de ces pré-calculs coûteux. Dans ce but, nous utilisons l'assistant de preuves Coq. Tout d'abord nous développons une bibliothèque d'«approximation polynomiale rigoureuse», permettant de calculer un polynôme d'approximation et un intervalle bornant l'erreur d'approximation à l'intérieur de Coq. Cette formalisation est un élément clé pour valider la première étape de SLZ, ainsi que l'implantation d'une fonction mathématique en général (avec ou sans arrondi correct). Puis nous avons implanté en Coq, formellement prouvé et rendu effectif 3 vérifieurs de certificats, dont la preuve de correction dérive du lemme de Hensel que nous avons formalisé dans les cas univarié et bivarié. En particulier, notre «vérifieur ISValP» est un composant clé pour la certification formelle des résultats générés par SLZ. Ensuite, nous nous sommes intéressés à la preuve mathématique d'algorithmes VF en «précision augmentée» pour la racine carré et la norme euclidienne en 2D. Nous donnons des bornes inférieures fines sur la plus petite distance non nulle entre sqrt(x²+y²) et un midpoint, permettant de résoudre le TMD pour cette fonction bivariée. Enfin, lorsque différentes précisions VF sont disponibles, peut survenir le phénomène de «double-arrondi», qui peut changer le comportement de petits algorithmes usuels en arithmétique. Nous avons prouvé en Coq un ensemble de théorèmes décrivant le comportement de Fast2Sum avec double-arrondis. / The Floating-Point (FP) implementation of a real-valued function is performed with correct rounding if the output is always equal to the rounding of the exact value, which has many advantages. But for implementing a function with correct rounding in a reliable and efficient manner, one has to solve the ``Table Maker's Dilemma'' (TMD). Two sophisticated algorithms (L and SLZ) have been designed to solve this problem, relying on some long and complex calculations that are performed by some heavily-optimized implementations. Hence the motivation to provide strong guarantees on these costly pre-computations. To this end, we use the Coq proof assistant. First, we develop a library of ``Rigorous Polynomial Approximation'', allowing one to compute an approximation polynomial and an interval that bounds the approximation error in Coq. This formalization is a key building block for verifying the first step of SLZ, as well as the implementation of a mathematical function in general (with or without correct rounding). Then we have implemented, formally verified and made effective 3 interrelated certificates checkers in Coq, whose correctness proof derives from Hensel's lemma that we have formalized for both univariate and bivariate cases. In particular, our ``ISValP verifier'' is a key component for formally verifying the results generated by SLZ. Then, we have focused on the mathematical proof of ``augmented-precision'' FP algorithms for the square root and the Euclidean 2D norm. We give some tight lower bounds on the minimum non-zero distance between sqrt(x²+y²) and a midpoint, allowing one to solve the TMD for this bivariate function. Finally, the ``double-rounding'' phenomenon can typically occur when several FP precision are available, and may change the behavior of some usual small FP algorithms. We have formally verified in Coq a set of results describing the behavior of the Fast2Sum algorithm with double-roundings.
|
3 |
Calcul flottant haute performance sur circuits reconfigurables / High-performance floating-point computing on reconfigurable circuitsPasca, Bogdan Mihai 21 September 2011 (has links)
De plus en plus de constructeurs proposent des accélérateurs de calculs à base de circuits reconfigurables FPGA, cette technologie présentant bien plus de souplesse que le microprocesseur. Valoriser cette flexibilité dans le domaine de l'accélération de calcul flottant en utilisant les langages de description de circuits classiques (VHDL ou Verilog) reste toutefois très difficile, voire impossible parfois. Cette thèse a contribué au développement du logiciel FloPoCo, qui offre aux utilisateurs familiers avec VHDL un cadre C++ de description d'opérateurs arithmétiques génériques adapté au calcul reconfigurable. Ce cadre distingue explicitement la fonctionnalité combinatoire d'un opérateur, et la problématique de son pipeline pour une précision, une fréquence et un FPGA cible donnés. Afin de pouvoir utiliser FloPoCo pour concevoir des opérateurs haute performance en virgule flottante, il a fallu d'abord concevoir des blocs de bases optimisés. Nous avons d'abord développé des additionneurs pipelinés autour des lignes de propagation de retenue rapides, puis, à l'aide de techniques de pavages, nous avons conçu de gros multiplieurs, possiblement tronqués, utilisant des petits multiplieurs. L'évaluation de fonctions élémentaires en flottant implique souvent l'évaluation en virgule fixe d'une fonction. Nous présentons un opérateur générique de FloPoCo qui prend en entrée l'expression de la fonction à évaluer, avec ses précisions d'entrée et de sortie, et construit un évaluateur polynomial optimisé de cette fonction. Ce bloc de base a permis de développer des opérateurs en virgule flottante pour la racine carrée et l'exponentielle qui améliorent considérablement l'état de l'art. Nous avons aussi travaillé sur des techniques de compilation avancée pour adapter l'exécution d'un code C aux pipelines flexibles de nos opérateurs. FloPoCo a pu ainsi être utilisé pour implanter sur FPGA des applications complètes. / Due to their potential performance and unmatched flexibility, FPGA-based accelerators are part of more and more high-performance computing systems. However, exploiting this flexibility for accelerating floating-point computations by manually using classical circuit description languages (VHDL or Verilog) is very difficult, and sometimes impossible. This thesis has contributed to the development of the FloPoCo software, a C++ framework for describing flexible FPGA-specific arithmetic operators. This framework explicitly separates the description of the combinatorial functionality of an arithmetic operator, and its pipelining for a given precision, operating frequency and target FPGA.In order to be able to use FloPoCo for designing high performance floating-point operators, we first had to design the optimized basic blocks. We first developed pipelined addition architectures exploiting the fast-carry lines present in modern FPGAs. Next, we focused on multiplication architectures. Using tiling techniques, we proposed novel architectures for large multipliers, but also truncated multipliers, based on the multipliers found in modern FPGA DSP blocks. We also present a generic FloPoCo operator which inputs the expression of a function, its input and output precisions, and builds an optimized polynomial evaluator for the fixed-point evaluation of this function. Using this building block we have designed floating-point operators for the square-root and exponential functions which significantly outperform existing operators. Finally, we also made use of advanced compilation techniques for adapting the execution of a C program to the flexible pipelines of our operators.
|
Page generated in 0.0363 seconds