• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 2
  • 1
  • Tagged with
  • 14
  • 8
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Une approche sémantique de détection de maliciel Android basée sur la vérification de modèles et l'apprentissage automatique

El Hatib, Souad 02 February 2024 (has links)
Le nombre croissant de logiciels malveillants Android s’accompagne d’une préoccupation profonde liée aux problèmes de la sécurité des terminaux mobiles. Les enjeux deviennent sans conteste de plus en plus importants, suscitant ainsi beaucoup d’attention de la part de la communauté des chercheurs. En outre, la prolifération des logiciels malveillants va de pair avec la sophistication et la complexité de ces derniers. En effet, les logiciels malveillants plus élaborés, tels que les maliciels polymorphes et métamorphiques, utilisent des techniques d’obscurcissement du code pour créer de nouvelles variantes qui préservent la sémantique du code original tout en modifiant sa syntaxe, échappant ainsi aux méthodes de détection usuelles. L’ambition de notre recherche est la proposition d’une approche utilisant les méthodes formelles et l’apprentissage automatique pour la détection des maliciels sur la plateforme Android. L’approche adoptée combine l’analyse statique et l’apprentissage automatique. En effet, à partir des applications Android en format APK, nous visons l’extraction d’un modèle décrivant de manière non ambiguë le comportement de ces dernières. Le langage de spécification formelle choisi est LNT. En se basant sur le modèle généré, les comportements malicieux exprimés en logique temporelle sont vérifiés à l’aide d’un vérificateur de modèle. Ces propriétés temporelles sont utilisées comme caractéristiques par un algorithme d’apprentissage automatique pour classifier les applications Android. / The ever-increasing number of Android malware is accompanied by a deep concern about security issues in the mobile ecosystem. Unquestionably, Android malware detection has received much attention in the research community and therefore it becomes a crucial aspect of software security. Actually, malware proliferation goes hand in hand with the sophistication and complexity of malware. To illustrate, more elaborated malware like polymorphic and metamorphic malware, make use of code obfuscation techniques to build new variants that preserve the semantics of the original code but modify it’s syntax and thus escape the usual detection methods. In the present work, we propose a model-checking based approach that combines static analysis and machine learning. Mainly, from a given Android application we extract an abstract model expressed in terms of LNT, a process algebra language. Afterwards, security related Android behaviours specified by temporal logic formulas are checked against this model, the satisfaction of a specific formula is considered as a feature, finally machine learning algorithms are used to classify the application as malicious or not.
12

Analyse de codes auto-modifiants pour la sécurité logicielle / Self-modifying code analysis for software security

Reynaud, Daniel 15 October 2010 (has links)
Les programmes auto-modifiants fonctionnent de manière singulière car ils sont capables de réécrire leur propre code en cours d'exécution. Absents des modèles de calcul théoriques, ils sont pourtant omniprésents dans les ordinateurs et les systèmes d'exploitations actuels. Ils sont en effet utilisés par les chargeurs d'amorçages, pour la compilation à la volée ou encore l'optimisation dynamique de code. Ils sont également omniprésents dans les programmes malveillants, dont les auteurs ont bien compris qu'ils constituaient des objets complexes à analyser. Ils sont également virtuellement présents dans tous les autres programmes mais de manière non-intentionnelle. En effet, on peut voir certaines classes de vulnérabilités, par exemple les failles par débordement de tampon, comme la possibilité d'exécuter accidentellement des données -- ce qui est un comportement caractéristique des programmes auto-modifiants.Au cours de cette thèse, nous avons proposé un modèle théorique permettant de caractériser un certain nombre de comportements auto-modifiants avancés. Nous avons également mis au point un prototype, TraceSurfer, permettant de détecter efficacement ces comportements à partir de l'analyse de traces et de les visualiser sous forme de graphes d'auto-référence. Enfin, nous avons validé par l'expérience à la fois le modèle théorique et l'outil en les testant sur un grand nombre de programmes malveillants / Self-modifying programs run in a very specific way: they are capable to rewrite their own code at runtime. Remarkably absent from theoretical computation models, they are present in every modern computer and operating system. Indeed, they are used by bootloaders, for just-in-time compilation or dynamic optimizations. They are also massively used by malware authors in order to bypass antivirus signatures and to delay analysis. Finally, they are unintentionally present in every program, since we can model code injection vulnerabilities (such as buffer overflows) as the ability for a program to accidentally execute data.In this thesis, we propose a formal framework in order to characterize advanced self-modifying behaviors and code armoring techniques. A prototype, TraceSurfer, allows us to detect these behaviors by using fine-grained execution traces and to visualize them as self-reference graphs. Finally, we assess the performance and efficiency of the tool by running it on a large corpus of malware samples
13

Protection obligatoire répartie : usage pour le calcul intensif et les postes de travail / Distributed mandatory protection

Gros, Damien 30 June 2014 (has links)
La thèse porte sur deux enjeux importants de sécurité. Le premier concerne l’amélioration de la sécurité des systèmes Linux présents dans le calcul intensif et le second la protection des postes de travail Windows. Elle propose une méthode commune pour l’observation des appels système et la répartition d’observateurs afin de renforcer la sécurité et mesurer les performances obtenues. Elle vise des observateurs du type moniteur de référence afin de garantir de la confidentialité et de l’intégrité. Une solution utilisant une méthode de calcul intensif est mise en oeuvre pour réduire les surcoûts de communication entre les deux moniteurs de référence SELinux et PIGA. L’évaluation des performances montre les surcoûts engendrés par les moniteurs répartis et analyse la faisabilité pour les différents noeuds d’environnements de calcul intensif. Concernant la sécurité des postes de travail, un moniteur de référence est proposé pour Windows. Il repose sur les meilleures protections obligatoires issues des systèmes Linux et simplifie l’administration. Nous présentons une utilisation de ce nouveau moniteur pour analyser le fonctionnement de logiciels malveillants. L’analyse permet une protection avancée qui contrôle l’ensemble du scénario d’attaque de façon optimiste. Ainsi, la sécurité est renforcée sans nuire aux activités légitimes. / This thesis deals with two major issues in the computer security field. The first is enhancing the security of Linux systems for scientific computation, the second is the protection of Windows workstations. In order to strengthen the security and measure the performances, we offer a common method for the distributed observation of system calls. It relies on reference monitors to ensure confidentiality and integrity. Our solution uses specific high performance computing technologies to lower the communication latencies between the SELinux and PIGA monitors. Benchmarks study the integration of these distributed monitors in the scientific computation. Regarding workstation security, we propose a new reference monitor implementing state of the art protection models from Linux and simplifying administration. We present how to use our monitor to analyze the behavior of malware. This analysis enables an advanced protection to prevent attack scenarii in an optimistic manner. Thus, security is enforced while allowing legitimate activities.
14

Analyse de programmes malveillants par abstraction de comportements / Malware Analysis by Behavior Abstraction

Beaucamps, Philippe 14 November 2011 (has links)
L’analyse comportementale traditionnelle opère en général au niveau de l’implantation de comportements malveillants. Pourtant, elle s’intéresse surtout à l’identification de fonctionnalités données et elle se situe donc plus naturellement à un niveau fonctionnel. Dans cette thèse, nous définissons une forme d’analyse comportementale de programmes qui opère non pas sur les interactions élémentaires d’un programme avec le système mais sur la fonction que le programme réalise. Cette fonction est extraite des traces d’un pro- gramme, un procédé que nous appelons abstraction. Nous définissons de façon simple, intuitive et formelle les fonctionnalités de base à abstraire et les comportements à détecter, puis nous proposons un mécanisme d’abstraction applicable à un cadre d’analyse statique ou dynamique, avec des algorithmes pratiques à complexité raisonnable, enfin nous décrivons une technique d’analyse comportementale intégrant ce mécanisme d’abstraction. Notre méthode est particulièrement adaptée à l’analyse des programmes dans des langages de haut niveau ou dont le code source est connu, pour lesquels l’analyse statique est facilitée : applications mobiles en .NET ou Java, scripts, extensions de navigateurs, composants off-the-shelf.Le formalisme d’analyse comportementale par abstraction que nous proposons repose sur la théorie de la réécriture de mots et de termes, les langages réguliers de mots et de termes et le model checking. Il permet d’identifier efficacement des fonctionnalités dans des traces et ainsi d’obtenir une représentation des traces à un niveau fonctionnel; il définit les fonctionnalités et les comportements de façon naturelle, à l’aide de formules de logique temporelle, ce qui garantit leur simplicité et leur flexibilité et permet l’utilisation de techniques de model checking pour la détection de ces comportements ; il opère sur un ensemble quelconque de traces d’exécution ; il prend en compte le flux de données dans les traces d’exécution; et il permet, sans perte d’efficacité, de tenir compte de l’incertitude dans l’identification des fonctionnalités. Un cadre d’expérimentation a été mis en place dans un contexte d’analyse dynamique comme statique / Traditional behavior analysis usually operates at the implementation level of malicious behaviors. Yet, it is mostly concerned with the identification of given functionalities and is therefore more naturally defined at a functional level. In this thesis, we define a form of program behavior analysis which operates on the function realized by a program rather than on its elementary interactions with the system. This function is extracted from program traces, a process we call abstraction. We define in a simple, intuitive and formal way the basic functionalities to abstract and the behaviors to detect, then we propose an abstraction mechanism applicable both to a static or to a dynamic analysis setting, with practical algorithms of reasonable complexity, finally we describe a behavior analysis technique integrating this abstraction mechanism. Our method is particularly suited to the analysis of programs written in high level languages or with a known source code, for which static analysis is facilitated: mobile applications for .NET or Java, scripts, browser addons, off-the-shelf components.The formalism we propose for behavior analysis by abstraction relies on the theory of string and terms rewriting, word and tree languages and model checking. It allows an efficient identification of functionalities in traces and thus the construction of a represen- tation of traces at a functional level; it defines functionalities and behaviors in a natural way, using temporal logic formulas, which assure their simplicity and their flexibility and enables the use of model checking techniques for behavior detection; it operates on an unrestricted set of execution traces; it handles the data flow in execution traces; and it allows the consideration of uncertainty in the identification of functionalities, with no complexity overhead. Experiments have been conducted in a dynamic and static analysis setting

Page generated in 0.0356 seconds