• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Geochemical implications of stirring and mixing in the Earth's mantle

Rudge, John Frederick January 2006 (has links)
Measurements of radiogenic isotopes can in principle constrain the melting, melt migration, and solid state convection that occurs in the Earth's mantle, but to do so requires suitable quantitative models. A new statistical model is introduced to better understand the observed heterogeneity in isotopic ratios 143Nd/144Nd, 87Sr/86Sr, 176Hf/177Hf,208Pb/204Pb, 206Pb/204Pb and 207Pb/204Pb measured on mid-ocean ridge basalt. The model is highly idealised, analytically tractable, and contains the essential physical processes involved: radioactive decay, the stirring and recycling of mantle convection, partial melting, and the mixing of melts. Comparison of the modelled heterogeneity with that observed constrains model parameters, which in turn constrains aspects of mantle convection and melting. The model provides a new interpretation of the 2.0 Ga lead-lead pseudo-isochron age in terms of an age distribution of mantle material. Simple equations relate the pseudo-isochron age to the rate of melting and decay constants. These equations are different from, but related to and more general than, those found previously for standard geochemical box models. The results are in good agreement with numerical simulations of mantle convection. The 2.0 Ga pseudo-isochron age is shown to infer a 0.5 Ga average time scale for melting of mantle material. Geochemical and geological evidence suggests that melt travels to the surface via a network of channels under the ridge. Motivated by this, the fluid dynamical problem of a open melt conduit surrounded by a deformable porous medium is studied. Previous work has shown that the conduit supports solitary waves of elevation, with a region of trapped melt travelling with the wave. The new analysis comes to a different conclusion, showing that the solitary wave is instead one of depression, without a region of trapped melt.
2

Understanding Non-Plume Related Intraplate Volcanism

Mazza, Sarah Elizabeth 21 December 2016 (has links)
Intraplate volcanism is a worldwide phenomenon producing volcanoes away from active plate boundaries, a process that cannot yet be sufficiently explained by plate tectonic processes, and thus is still a missing piece in the understanding of the dynamics and evolution of our planet. Models for the formation of intraplate volcanism are dominated by mantle plumes, but alternative explanations, such as adiabatic decompression triggered by lithospheric delamination, and edge driven convection (EDC), could be responsible for magmatism. This dissertation explores intraplate volcanic locations that do not fit the mantle plume model, and presents geochemical evidence for lithospheric delamination and edge driven convection for the cause of volcanism. I studied an Eocene volcanic swarm exposed in the Appalachian Valley and Ridge Province of Virginia and West Virginia, which are the youngest known igneous rocks along the Eastern North American Margin (ENAM). These magmas provide the only window into the most recent deep processes contributing to the post-rift evolution of this margin. This study presents the first high precision 40Ar/39Ar ages along with new geochemical data, and radiogenic isotopes that constrain the melting conditions and the timing of emplacement. Modeling of the melting conditions suggests that melting occurred under conditions slightly higher than average mantle beneath mid-ocean ridges. Asthenosphere upwelling related to localized lithospheric delamination is a possible process that can explain the intraplate signature of these magmas that lack evidence of a thermal anomaly. The Virginia-West Virginia region of the ENAM also preserves a second post-rift magmatic event in the Late Jurassic. By studying both the Late Jurassic and Eocene magmatic events we can better understand the post-rift evolution of passive margins. This study presents a comprehensive set of geochemical data that includes new 40Ar/39Ar ages, major and trace-element compositions, and analysis of radiogenic isotopes to further constrain their magmatic history. Modeling suggests that the felsic volcanics from both the Late Jurassic and Eocene events are consistent with fractional crystallization. Lithospheric delamination is the best hypothesis for magmatism in Virginia/West Virginia, due to tectonic instabilities that are remnant from the long-term evolution of this margin, resulting in a 'passive-aggressive' margin that records multiple magmatic events long after rifting ended. Finally, Bermuda is an intraplate volcano that has been historically classified as mantle plume related but evidence to support the plume model is lacking. Instead, geophysics have argued that EDC is the best model to explain Bermuda volcanism. This study presents the first geochemical analysis of Bermuda volcanism, and found that Bermuda was built by two different magmatic processes: melting of carbonated peridotite to produce silica under-saturated, trace element enriched volcanics and melting of an enriched upper mantle component that produced silica saturated volcanics. We attribute the cyclicity of silica under-saturated and silica saturated volcanics to EDC melting. / Ph. D. / Intraplate volcanoes are found away from active plate boundaries and cannot be explained by plate tectonics. Most introductory geology textbooks attribute intraplate volcanism to the mantle plume model, where hot material rises buoyantly through the Earth’s mantle from depths near the core-mantle boundary. The associated volcanoes are then found in a linear track, due to plate motion over the stationary mantle plume. The mantle plume model is valid for some locations, such as Hawaii, but cannot explain all intraplate volcanoes. Other localized models such as lithospheric delamination and edge driven convection are needed to explain intraplate volcanism. Lithospheric delamination is a process where the base of the lithosphere (crust and upper mantle) pulls away from the top of the lithosphere due to density contrasts. The delamination of the base of the lithosphere allows for the warmer asthenosphere (mantle beneath the lithosphere) to upwell and produce melts by decompression. Edge driven convection is a process where temperature differences in thick, cold continental crust and thin, warm oceanic crust creates a localized convecting cell in the mantle. This convecting cell is associated with down-welling beneath the continental crust and upwelling beneath the oceanic crust, and associated volcanism would be found on the oceanic crust. In Virginia-West Virginia there are two pulses of intraplate volcanic activity. Chapter 2 of this dissertation explores the geochemistry of the youngest volcanoes of Eastern North America, which are 48 million years old. Combining the geochemistry with the regional geophysics I proposed that lithospheric delamination is a plausible mechanism for these volcanic rocks. Chapter 3 further examines these volcanoes and adds a second pulse of magmatism that occurred 152 million years ago. Lithospheric delamination can also explain the 152 million year old volcanics. Bermuda is an extinct volcanic island found in the Atlantic Ocean, and has been historically explain by the mantle plume model. However, there has been no geochemical data to support the mantle plume model and the geophysical evidence supports edge driven convection. I present the first geochemical analysis of Bermuda’s volcanic pedestal and find that edge driven convection is a more plausible mechanism to account for volcanism.
3

Edelgase als Tracer für Wechselwirkungen von Krusten- und Mantelfluiden mit diamantführenden Gesteinen des östlichen Baltischen Schildes

Wiersberg, Thomas January 2001 (has links)
In der vorliegenden Arbeit werden anhand der Edelgaszusammensetzung von Kimberliten und Lamproiten sowie ihrer gesteinsbildenden Minerale die Wechselwirkungen dieser Gesteine mit Fluiden diskutiert. Die untersuchten Proben stammen vom östlichen Baltischen Schild, vom Kola-Kraton (Poria Guba und Kandalaksha) und vom karelischen Kraton (Kostamuksha). Edelgasanalysen nach thermischer oder mechanischer Gasextraktion von 23 Gesamtgesteinsproben und 15 Mineralseparaten ergeben folgendes Bild: Helium- und Neon-Isotopendaten der Fluideinschlüsse von Lamproiten aus Kostamuksha lassen auf den Einfluss einer fluiden Phase krustaler Herkunft schliessen. Diese Wechselwirkungen fanden wahrscheinlich schon während des Magmenaufstiegs statt, denn spätere Einflüsse krustaler Fluide auf die Lamproite und ihr Nebengestein (Quarzit) sind gering, wie anhand der C/<sup>36</sup>Ar-Zusammensetzung gezeigt wird. Auch sind die mit verschiedenen Datierungsmethoden (Rb-Sr, Sm-Nd, K-Ar) an Mineralseparaten und teilweise an Gesamtgestein ermittelten Alter konsistent und machen eine metamorphe Überprägung unwahrscheinlich. Aufgrund der Verteilung der primordialen Edelgasisotope zwischen Fluideinschlüssen und Gesteinsmatrix ist ein langsamer Magmenaufstieg anzunehmen, was die Möglichkeit der Kontamination mit einem krustalen Fluid während des Magmenaufstiegs erhöht.<br /> <br>Die Gasextraktion aus Mineralseparaten erfolgte thermisch, wodurch eine Freisetzung der Gase ausschließlich aus Fluideinschlüssen nicht möglich ist. Hierbei zeigen Amphibol und Klinopyroxen, separiert aus Kostamuksha-Lamproiten, in ihrer Neon-Isotopenzusammensetzung im Vergleich zur krustalen Zusammensetzung (Kennedy et al., 1990) ein leicht erhöhtes Verhältnis von <sup>20</sup>Ne/<sup>22</sup>Ne, was ein Hinweis auf Mantel-Neon sein könnte. Kalifeldspäte, Quarz und Karbonate enthalten dagegen nur Neon krustaler Zusammensetzung. Phlogopite haben sehr kleine Verhältnisse von <sup>20</sup>Ne/<sup>22</sup>Ne und <sup>21</sup>Ne/<sup>22</sup>Ne, zurückzuführen auf in-situ-Produktion von <sup>22</sup>Ne in Folge von U- und Th-Zerfallsprozessen.<br><br /> Wie unterschiedliche thermische Entgasungsmuster für <sup>40</sup>Ar und <sup>36</sup>Ar zeigen, ist <sup>36</sup>Ar in Fluideinschlüssen konzentriert. Das <sup>40</sup>Ar/<sup>36</sup>Ar-Isotopenverhältnis der Fluideinschlüsse von Lamproiten aus Kostamuksha ist antikorreliert mit der durch thermische Extraktion bestimmten Gesamtmenge an <sup>36</sup>Ar. Argon aus Fluideinschlüssen setzt sich daher aus zwei Komponenten zusammen: Einer Komponente mit atmosphärischer Argon-Isotopenzusammensetzung und einer krustalen Komponente mit einem Isotopenverhältnis <sup>40</sup>Ar/<sup>36</sup>Ar > 6000. Diffusion von radiogenem <sup>40</sup>Ar aus der Kristallmatrix in die Fluideinschlüsse spielt keine wesentliche Rolle.<br /> <br>Kimberlite aus Poria Guba und Kandalaksha zeigen anhand der Helium- und z. T. auch der Neon-Isotopenzusammensetzung eine Mantelkomponente in den Fluideinschlüssen an. Bei einem angenommenen <sup>20</sup>Ne/<sup>22</sup>Ne-Isotopenverhältnis von 12,5 in der Mantelquelle ergibt sich ein <sup>21</sup>Ne/<sup>22</sup>Ne-Isotopenverhältnis von 0,073 ± 0,011 sowie ein <sup>3</sup>He/<sup>4</sup>He-Isotopenverhältnis, welches im Vergleich zum subkontinentalem Mantel (Dunai und Baur, 1995) stärker radiogen geprägt ist. Solche Isotopensignaturen sind mit höheren Konzentrationen an Uran und Thorium in der Mantelquelle der Kimberlite zu erklären.<br /> <br>Rb-Sr- und Sm-Nd-Altersbestimmungen erfolgten von russischer Seite (Belyatskii et al., 1997; Nikitina et al., 1999) und ergeben ein Alter von 1,23 Ga für den Lamproitvulkanismus in Kostamuksha. Eigene K-Ar-Datierungen an Phlogopiten und Kalifeldspäten stimmen mit einem Alter von 1193 ± 20 Ma fast mit den Rb-Sr- und Sm-Nd-Altern überein. Die K-Ar-Datierung an einem Phlogopit aus Poria Guba, separiert aus dem Kimberlit PGK 12a, ergibt ein Alter von 396 Ma, ebenfalls in guter Übereinstimmung mit Rb-Sr-und Sm-Nd-Altern (ca. 400 Ma, Lokhov, pers. Mitteilung). K-Ar-Altersbestimmungen an Gesamtgestein aus Poria Guba erbrachten kein schlüssiges Alter. Die Rb-Sr- und Sm-Nd-Alter des Lamproitmagmatismus in Poria Guba betragen 1,72 Ga (Nikitina et al., 1999).<br /> <br>Vergleiche von gemessenen mit berechneten Edelgaskonzentrationen aus in-situ-Produktion zeigen weiterhin, dass in Abhängigkeit vom Alter der Probe Diffusionsprozesse stattgefunden haben, die zu unterschiedlichen und z. T. erheblichen Verlusten an Helium und Neon führten. Diffusionsverluste an Argon sind dagegen kaum signifikant. Unterschiedliche Diffusionsverluste in Abhängigkeit von Alter und betrachtetem Edelgas zeigen auch die primordialen Edelgase. / In the present thesis, interactions of kimberlites and lamproites as well as their constituent minerals with fluids are discussed based on noble gas compositions. The samples originate from the eastern Baltic Shield, more specifically from the Kola craton (Poria Guba and Kandalaksha) and the Karelia craton (Kostamuksha). Gas was extracted by stepwise heating and crushing from 23 whole rock samples and 15 mineral separates. These two techniques allow differential extraction of gas from fluid inclusions (crushing technique) and from the bulk sample (stepwise heating). The noble gas analyses provide the following information:</P> <P>Helium and neon isotopic compositions of fluid inclusions in lamproites reveal the presence of a crustal fluid phase. Fluid interaction probably ocurred already during the process of magma ascent. Interaction after lamproite emplacement seems unlikely. The lamproites and their host rock differ in the degree of fluid-rock interaction, as demonstrated by the C/<sup>36</sup>Ar composition. In addition, various dating methods (Rb-Sr, Sm-Nd, K-Ar) yield almost the same age within analytical error. Thus, a metamorphic overprint can be excluded. The distribution of primordial noble gases between fluid inclusions and crystal lattice suggests a relatively slow magma ascent, making an interaction of the lamproitic magma with crustal fluids even more likely. Since noble gases from mineral separates were extracted only by the stepwise heating method, gases stored in fluid inclusions could not be released separately.</P> <P>Amphibole and clinopyroxene separates yielded a higher <sup>20</sup>Ne/<sup>22</sup>Ne ratio in comparison to crustal composition (Kennedy et al., 1990). This presumably is an indication of a mantle derived fluid phase. On the other hand, neon isotopic composition of K-feldspar, quartz and carbonate separates are indistinguishable from the crustal composition. In comparison to other mineral separates, phlogopite yields very low ratios of <sup>20</sup>Ne/<sup>22</sup>Ne and <sup>21</sup>Ne/<sup>22</sup>Ne due to in situ production of <sup>22</sup>Ne, which is a result of nuclear reactions.</P> <P>The distinct thermal gas release patterns of <sup>40</sup>Ar and <sup>36</sup>Ar indicates that <sup>36</sup>Ar is concentrated in fluid inclusions. The <sup>40</sup>Ar/<sup>36</sup>Ar isotopic ratio in fluid inclusions shows a negative correlation with the total amount of <sup>36</sup>Ar released by thermal extraction. Therefore, argon from fluid inclusions is a simple 2-component mixture of air and a crustal component with an <sup>40</sup>Ar/<sup>36</sup>Ar ratio > 6000. It can be shown that diffusion of <sup>40</sup>Ar from the matrix into fluid inclusions is negligible.</P> <P>In contrast to lamproites, whole rock kimberlite samples from Poria Guba and Kandalaksha show clear evidence in helium and, to a certain extentalso in neon isotope ratios, of interaction with a mantle derived fluid phase. Assuming a <sup>20</sup>Ne/<sup>22</sup>Ne ratio of 12.5 for the mantle endmember, a <sup>21</sup>Ne/<sup>22</sup> Ne ratio of 0.073 ± 0.011 can be calculated. Likewise, the resulting <sup>3</sup>He/<sup>4</sup>He ratio is more strongly influenced by radiogenic helium in comparison to the mean subcontinental mantle (Dunai und Baur, 1995). Such behaviour reflects higher concentrations of uranium and thorium in the magma source of kimberlites than the subcontinental mantle.</P> <P>Rb-Sr and Sm-Nd age determinations (Belyatskii et al., 1997; Nikitina et al., 1999) yield 1.23 Ga for the lamproite magmatism in Kostamuksha. K-Ar dating of phlogopite and K-feldspar provides similar ages (1.19 Ga). K-Ar dating of a single phlogopite separate from the Kimberlite sample PGK12a from Poria Guba, yields an age of 396 Ma which corresponds well with Rb-Sr and Sm-Nd ages.</P> <P>Depending on sample age, distinct and partly extensive diffusive loss of helium and neon has occurred, as shown by comparison of measured and calculated concentrations of in situ produced isotopes. Diffusion loss is negligible for argon. This is also strongly supported by primordial noble gas composition.
4

Mantle melting processes: evidences from ophiolites, large igneous provinces, and intraplate seamounts

Madrigal Quesada, Maria Del Pilar 14 June 2016 (has links)
Melting processes in the mantle have a key role in plate tectonics and in the most colossal phenomena in the Earth, like large igneous provinces, mantle plume upwellings, and the constant growth of the planet's tectonic plates. In this study we use the geochemical and petrological evidence preserved in ophiolites, large igneous provinces, and intraplate seamounts to understand causes, timing and implications of melting in these different tectonic environments. We studied melting at extensional environments, in mid-ocean ridges and back-arc basins, preserved in ophiolites. The Santa Elena Ophiolite in Costa Rica comprises a well-preserved fragment of the lithospheric mantle that formed along a paleo-spreading center. Petrological models of fractional crystallization suggest deep pressures of crystallization of >0.4 GPa for most of the samples, in good agreement with similar calculations from slow/ultra-slow spreading ridges and require a relatively hydrated (~0.5 wt% H2O) MORB-like source composition. Our findings suggest a complex interplay between oceanic basin and back-arc extension environments during the Santa Elena Ophiolite formation. Secondly, we analyzed large igneous provinces and their mechanisms of formation. As the surface expression of deep mantle processes, it is essential to understand the time frames and geodynamics that trigger these massive lava outpourings and their impact to life in the planet. We analyze the record and timing of preserved fragments of the Pacific Ocean Large Igneous Provinces to reconstruct the history of mantle plume upwellings and their relation with a deep-rooted source like the Pacific Large Low Shear Velocity Province during the Mid-Jurassic to Upper Cretaceous. Lastly, we explore the occurrence of low-volume seamounts unrelated to mantle plume upwellings and their geochemical modifications as they become recycled inside the mantle, to answer questions related to the nature and origin of upper mantle heterogeneities. We present evidence that an enriched mantle reservoir composed of recycled seamount materials can be formed in a shorter time period than ancient subducted oceanic crust, thought to be the forming agent of the HIMU mantle reservoir endmember. A "fast-forming" enriched reservoir could explain some of the enriched signatures commonly present in intraplate magmas not related with an active mantle plume upwelling. / Ph. D.

Page generated in 0.0945 seconds