• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimising the mechanical properties and microstructure of armoured steel plate in quenched and tempered condition

Kasonde, Maweja 29 March 2007 (has links)
The effect of the chemical composition, austenitisation temperature and tempering temperature and time on the mechanical properties and on the ballistic performance of martensitic steel armour plates was studied. It was established in this study that the mechanical properties and the ballistic performance of martensitic steels can be optimised by controlling the chemical composition and the heat treatment parameters. However, it was observed that for a given chemical composition of the steel the heat treatment parameters to be applied to advanced ballistic performance armour plates were different from those required for higher mechanical properties. Such a contradiction rendered the relationship between mechanical properties and ballistic performance questionable. Systematic analysis of the microstructure and the fracture mechanism of some martensitic armour plate steels was carried out to explain the improved ballistic performance of steels whose mechanical properties were below that specificied for military and security applications. It was inferred from phase analysis and its quantification by X-ray diffraction, characterisation of the martensite using scanning electron microscopy, transmission electron microscopy and atomic force microscopy that the retained austenite located in the plate interfaces and on grain boundaries of the martensite was the main constituent resisting localised yielding during ballistic impact on thin steel plates. A part of the kinetic energy is transformed into adiabatic heat where a reaustenitisation of the plate martensite and the formation of new lath martensite was observed. Another part is used to elastically and plastically deform the ballistic impact affected region around the incidence point. Dislocation pile-ups at twinned plate interfaces suggest that the twin interfaces act as barriers to dislocation movement upon high velocity impact loading. The diameter of the affected regions, that determines the volume of the material deforming plastically upon impact, was found to vary as a function of the volume fraction of retained austenite in the martensitic steel. Upon impact, retained austenite transforms to martensite by Transformation Induced Plasticity, the “ TRIP ” effect. High volume fractions of retained austenite in the martensitic steel were found to yield low values of the ratio yield strength to ultimate tensile strength (YS/UTS) and a high resistance against localised yielding and, therefore, against ballistic perforation. A Ballistic Parameter was proposed for the prediction of ballistic performance using the volume fraction of retained austenite and the thickness of the armour plate as variables. Based on the martensite structure and the results of the ballistic testing of 13 armour plate steels a design methodology comprising new specifications was proposed for the manufacture of armour plates whose thicknesses may be thinner than 6mm. / Dissertation (MSc (Metallurgical Engineering))--University of Pretoria, 2007. / Materials Science and Metallurgical Engineering / unrestricted
2

Thermodynamic modelling ofmartensite start temperature in commercial steels

Gulapura Hanumantharaju, Arun Kumar January 2018 (has links)
Firstly, an existing thermodynamic model for the predicting of martensite start temperature of commercial steels has been improved to include more elements such as N, Si, V, Mo, Nb, W, Ti, Al, Cu, Co, B, P and S and their corresponding composition ranges for Martensitic transformation. The predicting ability of the existing model is improved considerably by critical assessment of different binary and ternary systems i.e. CALPHAD approach which is by wise selection of experimental data for optimization of the interaction parameters. Understanding the degree of variation in multi-component commercial alloys, various ternary systems such as Fe-Ni-X and Fe-Cr-X are optimized using both binary and ternary interaction parameters. The large variations between calculated and the experimental values are determined and reported for improvements in thermodynamics descriptions.Secondly, model for the prediction of Epsilon martensite start temperature of some commercial steels and shape memory alloys is newly introduced by optimizing Fe-Mn, Fe-Mn-Si and other Fe-Mn-X systems considering the commercial aspects in the recent development of light weight steels alloyed with Al and Si.Thirdly, the effect of prior Austenite grain size (pAGS) on martensite start temperature is introduced into the model in the form of non-chemical contribution which will greatly influence the Gibbs energy barrier for transformation. A serious attempt has been made to describe the dependency of transition between lenticular and thin-plate martensite morphologies on the refinement of prior Austenite grain size.Finally, the model is validated using a data-set of 1500 commercial and novel alloys. Including the newly modified thermodynamic descriptions for the Fe-based TCFE9 database by Thermo-Calc software AB, the model has the efficiency to predict the martensite start temperature of Multi-component alloys with an accuracy of (±) 35 K. The model predictability can be further improved by critical assessment of thermodynamic factors such as stacking faults and magnetism in Fe-Mn-Si-Ni-Cr systems.
3

The Deformation-induced Martensitic Phase Transformation in Low Chromium Iron Nitrides at Cryogenic Temperatures

Feng, Zhiyao 31 May 2018 (has links)
No description available.

Page generated in 0.1152 seconds