• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Using optical stimulation to study the developing thalamocortical circuit in mouse somatosensory cortex

Marques-Smith, Andre January 2014 (has links)
No description available.
2

Elektrophysiologische Charakterisierung GABA-Rezeptoren vermittelter Inhibition an Martinotti-Zellen im somatosensorischen Kortex / Electrophysiological characterization of GABA receptor-mediated inhibition on Martinotti cells in the somatosensory cortex

Delchmann, Jürgen 17 January 2018 (has links)
No description available.
3

Functional connectivity of layer II/III and V GABAergic Martinotti cells in the primary somatosensory (barrel) cortex of mice

Walker, Florian 10 February 2016 (has links)
No description available.
4

Synchronization by Distal Dendrite-targeting Interneurons

Hilscher, Markus Michael 01 December 2016 (has links)
Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2018-01-24T12:39:09Z No. of bitstreams: 1 MarkusMichaelHilscher_TESE.pdf: 11039544 bytes, checksum: 9754abf5e62f785551c64a4ba1a727d0 (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2018-01-29T12:29:16Z (GMT) No. of bitstreams: 1 MarkusMichaelHilscher_TESE.pdf: 11039544 bytes, checksum: 9754abf5e62f785551c64a4ba1a727d0 (MD5) / Made available in DSpace on 2018-01-29T12:29:16Z (GMT). No. of bitstreams: 1 MarkusMichaelHilscher_TESE.pdf: 11039544 bytes, checksum: 9754abf5e62f785551c64a4ba1a727d0 (MD5) Previous issue date: 2016-12-01 / A sincroniza??o neuronal surge de uma intera??o cooperativa de v?rios tipos celulares atrav?s de excita??o e inibi??o. Os mecanismos por tr?s desse tipo de coordena??o neuronal s?o, provavelmente, os mais din?micos entre as fun??es cerebrais, dificultando sua compreens?o. Entre os fatores que dificultam o estudo da sincronia, pode-se citar: o vasto n?mero de tipos de celulares, a diversidade de processos sin?pticos, a contribui??o de uma multiplicidade de canais e correntes i?nicas, entre outros. Essa tese tem como objetivo entender o papel de interneur?nios que especificamente inervam o dom?nio distal dos dendritos de c?lulas piramidais do hipocampo e neoc?rtex, na sincroniza??o de neur?nios em suas respectivas redes. A distribui??o de canais i?nicos e receptors sin?pticos em dendritos de c?lulas piramidais ? extremamente anisotr?pica. Assim, interneur?nios que inervam dom?nios proximais e distais dos dendritos causam efeitos distintos na c?lula alvo quando ativados. Por exemplo, por??es distais dos dendritos cont?m em abund?ncia um dos principais canais marcapassos em neur?nios: o canal regulado por nucleot?deo c?clico ativado por hiperpolariza??o. Esses canais produzem uma corrente cati?nica despolarizante (Ih) e tem um papel importante na regula??o da excitabilidade neuronal alterando dramaticamente as propriedades de disparo de neur?nios. Usando modelagem computacional, essa tese mostra como a amplitude de Ih em certos tipos celulares muda a taxa de disparo de um neur?nio, sua sincronia al?m da energia espectral e frequ?ncia de oscila??es. Al?m disso, como a express?o de Ih difere entre regi?es cerebrais, localiza??o e tipos celulares, essa tese, fazendo o uso de patch clamp, explora como Ih difere ao longo do eixo dorsoventral do hipocampo em c?lulas oriens-lacunosum moleculare (OLM), que s?o os principais interneur?nios que inervam dendritos distais dessa regi?o. Ademais, estudou-se aqui as c?lulas Martinotti, interneur?nios que inervam os dendritos distais do neoc?rtex. Nesse estudo, mostrou-se como uma popula??o definida de interneur?nios pode ser manipulada com o objetivo de controlar e coordenar o disparo de c?lulas piramidais. Ao fornecer inibi??o com energia e frequ?ncia adequada, as c?lulas Martinotti afetam especificamente um ?nico tipo de c?lula piramidal. Usando optogen?tica para ativar/desativar popula??es de c?lulas Martinotti, ? poss?vel gerar potenciais de a??o rebote em c?lulas piramidais quando alinhadas temporalmente. Os potenciais de a??o rebote, por sua vez, s?o resultado de uma forte inibi??o produzida pelas c?lulas Martinotti, o que faz com que esses esses interneur?nios possam resetar o disparo de c?lulas piramidais. De forma geral, c?lulas Martinotti e c?lulas OLM mostram similaridades surpreendentes em propriedades morfol?gicas, neuroqu?micas e eletrofisiol?gicas. Especialmente, suas longas proje??es axonais para camadas superiores assim como seus modos de disparo lentos, com baixos limiares e acomodativos tornam esses neur?nios singulares em suas capacidades de sincronizar os circuitos nos quais est?o inseridos. / Synchronization among neurons arises from the cooperative interaction of various cell types through excitation and inhibition. The mechanisms behind this type of neuronal orchestration are as versatile as almost no other coordination task in the brain, making its comprehension heavily challenging. Among many others, the high number of involved cell types, the diversity of synaptic processes as well as the contribution of a multitude of ion channels and currents span the plurality of neuronal synchronization mechanisms in our brains. Focusing on two brain areas, the hippocampus and the neocortex, this thesis aims to understand the role of distal dendritetargeting interneurons in shaping pyramidal cell activity and the timing of their action potentials. The distribution of ion channels and synaptic receptors in pyramidal cell dendrites is extremely anisotropic. Thus, interneurons innervating the proximal or distal areas of the dendrites cause different effects in the target cell when activated. For example, the distal portions of the pyramidal cell dendrites contain one of the most prominent pacemaker channels: the hyperpolarizationactivated cyclic nucleotide-gated channels. These channels produce a cationic depolarizing current (Ih) and play an essential role in the regulation of neuronal excitability. Using computational modeling, this thesis shows how the amount of Ih in certain cell types determines their spike rate, synchrony as well as power and frequency of ongoing network oscillations. Moreover, since Ih differs between brain regions as well as cell types and location, this thesis electrophysiologically explores how Ih differs along the dorsoventral axis of hippocampus in oriens-lacunosum moleculare (OLM) cells, the main distal dendrite-targeting interneurons of that region. Utilizing the main distal dendrite-targeting interneuron of the neocortex, the Martinotti cell, this thesis also shows how a defined population of interneurons can be manipulated in order to control and align pyramidal cell firing. By providing the right amount and frequency of inhibition, Martinotti cells are able to synchronize trains of subtype-specific pyramidal cells. Using optogenetic approaches to activate/inactivate populations of Martinotti cells, these dendrite-targeting interneurons are shown to trigger rebound action potentials in pyramidal cells when temporally aligned. The rebound action potentials in turn are the result of strong inhibition by Martinotti cells, giving these distal dendrite-targeting interneurons the power to reset pyramidal cell firing. Overall, Martinotti cells and OLM cells show quite striking similarities in morphological, neurochemical and electrophysiological properties. Especially, their long axonal projections to upper layers as well as their low-threshold, slow spiking fashion and the accommodating firing make these distal dendrite-targeting interneurons so special for neuronal synchronization.
5

Elektrophysiologische Charakterisierung von GABA-Rezeptor-vermittelter Inhibition an Martinotti-Zellen der Schicht 5 im Barrel-Kortex / Electrophysiological characterization of GABA-receptor-mediated inhibition on Martinotti cells in layer 5 of the barrel cortex

Glöckner, Kristina 10 December 2020 (has links)
No description available.

Page generated in 0.065 seconds