• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 362
  • 106
  • 92
  • 59
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • 7
  • 7
  • 5
  • 4
  • Tagged with
  • 839
  • 839
  • 297
  • 137
  • 133
  • 113
  • 98
  • 97
  • 85
  • 84
  • 78
  • 77
  • 72
  • 67
  • 65
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
491

Catalytic performances of NiMo/Zr-SBA-15 catalysts for the hydrotreating of bitumen derived heavy gas oil

Biswas, Piyali 26 May 2011
Gas-oil obtained from bitumen contains a significant amount of impurities, which are difficult to remove using a conventional alumina supported hydrotreating catalyst. Innumerable studies have been carried out to develop a highly effective hydrotreating catalyst, and among all utilizing more advanced support is considered as a better alternative. Recently, SBA-15, which is an ordered mesoporous silica support, has received importance as a catalyst support because of its excellent textural properties. However, SBA-15 lacks surface acidity and provides very low metal-support interaction. By modifying SBA-15 with zirconia, an optimum level of surface acidity and Si-Mo interaction can be achieved. Also, by doping zirconia with SBA-15, the textural properties of zirconia can be improved. Hence, a synergistic effect can be obtained while incorporating zirconia onto SBA-15 and the resulting material Zr-SBA-15 can be used as an effective support for hydrotreating catalyst. In the present study, Zr-SBA-15 supports were prepared by the post synthesis and the direct synthesis method with different zirconia loading. Zr-SBA-15 supported NiMo catalysts were prepared by incipient wetness impregnation technique. Catalysts and supports were characterized by small angle X-ray scattering (SAXS), nitrogen adsorption/desorption (BET), powder X-ray diffraction (XRD), transmission electron spectroscopy (TEM), scanning electron microscopy (SEM), and Raman spectroscopy methods.<p> Characterization of support confirmed that the zirconia was successfully incorporated in a mesoporous SBA-15 structure without significantly changing the textural properties of SBA-15. The performance of the Zr-SBA-15 supported NiMo catalysts was evaluated based on hydrodesulfurization and hydrodenitrogenation activities exhibited during hydrotreating of heavy gas oil derived from Athabasca bitumen at industrial operating condition (temperature 375-395 °C, pressure 8.9 MPa, LHSV 1.0 hr-1 and gas/oil ratio 600 Nm3/m3). The comparison of catalytic activities showed that the NiMo catalysts supported on Zr-SBA-15, prepared by direct and post synthesis method exhibited higher hydrotreating activity compared to SBA-15 supported catalyst. NiMo catalyst supported on Zr-SBA-15 with 23 wt% of ZrO2 loading, prepared by post synthesis method showed the highest activity among all the catalysts.<p> After determining the best support, the optimum catalyst metal loadings on the Zr-SBA-15 support was found to be 17 wt% of Mo and 3.4 wt% of Ni. This catalyst also showed higher activity in mass basis for the hydrotreating of heavy gas oil compared to that of commercial hydrotreating catalyst.<p> A kinetic study was performed on the optimum NiMo/Zr-SBA-15 catalyst to predict its HDS and HDN activities while varying the parameters of temperature, liquid hourly space velocity (LHSV), pressure and gas-to-oil ratio. Rate expressions were developed using Power Law and Langmuir-Hinshelwood model to predict the behavior of both the HDS and HDN reactions. Power law models were best fit with reaction orders of 1.8 and 1.3, and activation energies of 115 kJ/mol and 121 kJ/mol, for HDS and HDN reactions, respectively. The activation energies calculated using Langmuir-Hinshelwood model considering H2S inhibition were found to be 122 kJ/mol and 138 kJ/mol, for HDS and HDN reactions, respectively.
492

Improving the Energy Efficiency of Ethanol Separation through Process Synthesis and Simulation

Haelssig, Jan B. 13 July 2011 (has links)
Worldwide demand for energy is increasing rapidly, partly driven by dramatic economic growth in developing countries. This growth has sparked concerns over the finite availability of fossil fuels and the impact of their combustion on climate change. Consequently, many recent research efforts have been devoted to the development of renewable fuels and sustainable energy systems. Interest in liquid biofuels, such as ethanol, has been particularly high because these fuels fit into the conventional infrastructure for the transportation sector. Ethanol is a renewable fuel produced through the anaerobic fermentation of sugars obtained from biomass. However, the relatively high energy demand of its production process is a major factor limiting the usefulness of ethanol as a fuel. Due to the dilute nature of the fermentation product stream and the presence of the ethanol-water azeotrope, the separation processes currently used to recover anhydrous ethanol are particularly inefficient. In fact, the ethanol separation processes account for a large fraction of the total process energy demand. In the conventional ethanol separation process, ethanol is recovered using several distillation steps combined with a dehydration process. In this dissertation, a new hybrid pervaporation-distillation system, named Membrane Dephlegmation, was proposed and investigated for use in ethanol recovery. In this process, countercurrent vapour-liquid contacting is carried out on the surface of a pervaporation membrane, leading to a combination of distillation and pervaporation effects. It was intended that this new process would lead to improved economics and energy efficiency for the entire ethanol production process. The Membrane Dephlegmation process was investigated using both numerical and experimental techniques. Multiphase Computational Fluid Dynamics (CFD) was used to study vapour-liquid contacting behaviour in narrow channels and to estimate heat and mass transfer rates. Results from the CFD studies were incorporated into a simplified design model and the Membrane Dephlegmation process was studied numerically. The results indicated that the Membrane Dephlegmation process was more efficient than simple distillation and that the ethanol-water azeotrope could be broken. Subsequently, a pilot-scale experimental system was constructed using commercially available, hydrophilic NaA zeolite membranes. Results obtained from the experimental system confirmed the accuracy of the simulations.
493

Diseño del proceso de purificación de estireno mediante adsorción en alúmina

Rivero Martínez, María José 15 July 2002 (has links)
En este trabajo se ha realizado el diseño del proceso de purificación deestireno mediante adsorción en alúmina. Esta purificación consiste básicamente enla separación de agua y el inhibidor de la polimerización, 4-terc-butil catecol (TBC),presentes en el estireno como etapa previa en la obtención del caucho sintético, yaque la presencia de estos compuestos dificulta y encarece dicha operación.Para determinar las condiciones experimentales de trabajo, se ha tomadocomo referencia un proceso operativo actualmente a escala industrial en la plantade fabricación de caucho sintético que la empresa Dynasol Elastómeros posee enGajano (Cantabria). Así mismo, se ha empleado el estireno que esta empresautiliza como materia prima que posee alrededor de 150 mg/kg de agua y 15 mg/kgde TBC.En primer lugar, se ha procedido a la determinación de los equilibrios deadsorción agua-alúmina y TBC-alúmina. A continuación, se ha efectuado una seriede experimentos dinámicos a escala de laboratorio en los que se han obtenido laevolución de la concentración de cada uno de los adsorbatos en el estireno a lasalida de la columna de adsorción en función del tiempo. Posteriormente, se hallevado a cabo el desarrollo del modelo matemático para lo que se han analizadolas distintas etapas en el proceso de transferencia de materia, así como susconsecuentes resistencias, y se han obtenido los parámetros correspondientes.A continuación, se ha realizado un análisis del cambio de escala, para lo quese ha procedido a la construcción de una planta piloto en la propia factoría queproduce el caucho sintético, en la que se han realizado diversos experimentos quehan sido contrastados con las simulaciones que predecía el modelo matemático. Lacomparación ha permitido validar el modelo y los parámetros cinéticos.Finalmente, utilizando el modelo y los parámetros obtenidos en las etapasanteriores se ha simulado el proceso de purificación de estireno operativo a escalaindustrial. / In this work, the design of the purification process of styrene by adsorptiononto activated alumina, has been carried out. The purification consists basically ofremoving water and a polimerisation inhibitor, 4-terc-butyl catechol (TBC), as aprevious step in the manufacture of synthetic rubber.To determine the experimental working conditions, a real process thatoperates on industrial scale in a factory which produces synthetic rubber in Spain(Dynasol Elastómeros) has been taken as reference. The styrene used in this workis the industrial raw material and contains approximately 150 mg/kg of water and 15mg/kg of polimerisation inhibitor.First, adsorption equilibrium water-alumina and TBC-alumina have beenstudied. Then, some dynamic experiments on laboratory scale have been carriedout in order to obtain breakthrough curves for both adsorbates. A mathematicalmodel that describes the mass transfer process has been developed analysing thepossible resistances, and the corresponding parameters have been obtained.To analise the scale-up of the adsorption process a pilot plant has been builtin the synthetic rubber factory and the experimental results have been comparedwith the results predicted by the mathematical model. Finally, thanks to themathematical model, the parameters that have been obtained during the laboratoryscale experiments and its validation on pilot plant scale, a model that can describethe industrial process and can be useful to find the best operation conditions hasbeen developed.
494

Estudi de l'estabilització dels llits fluïditzats sòlios-gas mitjançant l'aplicació d'un camp magnètic

Arnaldos Viger, Josep 03 June 1986 (has links)
La tesi s’inicia fent una presentació del comportament dels llits estabilitzats magnèticament i de les seves aplicacions, així com de les limitacions que tenen degut a les pèrdues de les propietats magnètiques en certes condicions.A continuació, es proposa un model matemàtic dels llits fluïditzats estabilitzats magnèticament, basat en la distribució que segueixen les partícules amb les línies del camp. L’estabilització magnètica també s’ha aplicat a llits fluïditzats amb barreges de partícules magnètiques i no magnètiques. S’ha estudiat el comportament d’aquests sistemes, així com la influència de la fracció màssica de material magnètic en el retard en l’aparició del bombolleig. Els resultats obtinguts mostren que l’estabilització magnètica pot aplicar-se no solament a la fluïdització de partícules magnetitzables sinó també a partícules no magnetitzables, si una certa fracció de material magnètic és present en el llit. Es proposen diferents correlacions per al càlcul de la velocitat de transició en funció de les propietats del sistema gas-sòlid i les condicions d’operació.També s’estudia l’efecte del camp magnètic sobre el comportament tèrmic dels llits fluïditzats de partícules magnètiques escalfats amb una superfície calefactora introduïda dins el llit. S’ha determinat la distribució axial i radial de temperatures en el llit. A partir dels resultats experimentals, s’ha desenvolupat un model que permet el càlcul de la conductivitat tèrmica efectiva del llit. A més, mitjançant l’aplicació de l’analogia de Chilton i Colburn a les dades experimentals obtingudes, s’han proposat diferents correlacions per a l’estimació del coeficient de transferència de calor en llits estabilitzats i semi estabilitzats.Finalment, s’ha estudiat experimentalment, mitjançant l’assecament d’aire humit en llits formats per barreges d’alúmina-acer, la transferència de matèria en llits estabilitzats i semi estabilitzats. S’han emprat dos paràmetres, eficiència del llit i factor de eficiència, per comparar el comportament dels diferents tipus de llits. La precisió del model teòric desenvolupat s’ha provat amb els resultats experimentals obtinguts. Els models corresponents als llits fluïditzats clàssics no presenten un bon ajust amb les dades experimentals; ara bé, quan aquests models són modificats tenint en compte l’efecte del camp magnètic, l’ajust amb les dades és molt millor. / First, in this thesis, the behaviour of the magnetically stabilized fluidized bed is presented, as well as its applications; the limitations due to the loss of magnetic properties in certain conditions are also considered.Later, a mathematical model of the magnetically stabilized fluidized bed, based on the arrangement of particles following field lines is proposed. Magnetic stabilization has also been applied to fluidized beds with mixture of magnetisable and non-magnetisable particles. The behaviour of these systems is studied, as well as the influence of the magnetic material mass fraction on the delay of bubbling. The results obtained show that the magnetic stabilization can be applied not only to the fluidization of magnetisable materials but also to non-magnetisable particles, if a certain fraction of magnetisable material is present. Correlations are proposed to calculate the transition velocity as a function of gas-solid properties and operating conditions.Also, the effect of the magnetic field on the thermal behaviour of a fluidized bed of magnetisable particles with an immersed heating surface has been studied. The temperature distribution inside the bed has been determined, both in the radial and axial directions. A model has been developed which allows calculation of the effective thermal conductivity of the bed from experimental data. In addition, by means of the application of the Chilton and Colburn analogy to the experimental data obtained, different correlations for the estimation of the heat transfer coefficient in stabilized and semi-stabilized beds have been proposed.Finally, the mass transfer in magnetically stabilized and semi-stabilized beds has been studied experimentally using the drying of moist air in beds of alumina-steel mixtures. Two parameters, bed efficiency and efficiency factor have been used to compare the behaviour of the different beds. The accuracy of the theoretical model developed has been tested using the results obtained. The models corresponding to the classical fluidized bed do not agree with experimental data; however, when these models are modified to take into account the effect of magnetic stabilization, the accuracy is much better.
495

Catalytic performances of NiMo/Zr-SBA-15 catalysts for the hydrotreating of bitumen derived heavy gas oil

Biswas, Piyali 26 May 2011 (has links)
Gas-oil obtained from bitumen contains a significant amount of impurities, which are difficult to remove using a conventional alumina supported hydrotreating catalyst. Innumerable studies have been carried out to develop a highly effective hydrotreating catalyst, and among all utilizing more advanced support is considered as a better alternative. Recently, SBA-15, which is an ordered mesoporous silica support, has received importance as a catalyst support because of its excellent textural properties. However, SBA-15 lacks surface acidity and provides very low metal-support interaction. By modifying SBA-15 with zirconia, an optimum level of surface acidity and Si-Mo interaction can be achieved. Also, by doping zirconia with SBA-15, the textural properties of zirconia can be improved. Hence, a synergistic effect can be obtained while incorporating zirconia onto SBA-15 and the resulting material Zr-SBA-15 can be used as an effective support for hydrotreating catalyst. In the present study, Zr-SBA-15 supports were prepared by the post synthesis and the direct synthesis method with different zirconia loading. Zr-SBA-15 supported NiMo catalysts were prepared by incipient wetness impregnation technique. Catalysts and supports were characterized by small angle X-ray scattering (SAXS), nitrogen adsorption/desorption (BET), powder X-ray diffraction (XRD), transmission electron spectroscopy (TEM), scanning electron microscopy (SEM), and Raman spectroscopy methods.<p> Characterization of support confirmed that the zirconia was successfully incorporated in a mesoporous SBA-15 structure without significantly changing the textural properties of SBA-15. The performance of the Zr-SBA-15 supported NiMo catalysts was evaluated based on hydrodesulfurization and hydrodenitrogenation activities exhibited during hydrotreating of heavy gas oil derived from Athabasca bitumen at industrial operating condition (temperature 375-395 °C, pressure 8.9 MPa, LHSV 1.0 hr-1 and gas/oil ratio 600 Nm3/m3). The comparison of catalytic activities showed that the NiMo catalysts supported on Zr-SBA-15, prepared by direct and post synthesis method exhibited higher hydrotreating activity compared to SBA-15 supported catalyst. NiMo catalyst supported on Zr-SBA-15 with 23 wt% of ZrO2 loading, prepared by post synthesis method showed the highest activity among all the catalysts.<p> After determining the best support, the optimum catalyst metal loadings on the Zr-SBA-15 support was found to be 17 wt% of Mo and 3.4 wt% of Ni. This catalyst also showed higher activity in mass basis for the hydrotreating of heavy gas oil compared to that of commercial hydrotreating catalyst.<p> A kinetic study was performed on the optimum NiMo/Zr-SBA-15 catalyst to predict its HDS and HDN activities while varying the parameters of temperature, liquid hourly space velocity (LHSV), pressure and gas-to-oil ratio. Rate expressions were developed using Power Law and Langmuir-Hinshelwood model to predict the behavior of both the HDS and HDN reactions. Power law models were best fit with reaction orders of 1.8 and 1.3, and activation energies of 115 kJ/mol and 121 kJ/mol, for HDS and HDN reactions, respectively. The activation energies calculated using Langmuir-Hinshelwood model considering H2S inhibition were found to be 122 kJ/mol and 138 kJ/mol, for HDS and HDN reactions, respectively.
496

Formation and characterization of hybrid membranes utilizing high-performance polyimides and carbon molecular sieves

Perry, John Douglas 18 May 2007 (has links)
Current membrane technology, based on polymeric materials, is subject to a limiting tradeoff between productivity (permeability) and efficiency (selectivity). Other materials with better gas separation performance exist, such as zeolites and carbon molecular sieves, but the physical characteristics of these materials inhibit industrial scale membrane preparation. This research focuses on the application of hybrid membrane technology, which has shown the ability to combine the advantageous properties of these materials, to a system comprised of carbon molecular sieves dispersed in the upper bound polymer 6FDA-6FpDA. Hybrid membranes require effective mass transfer across the interface between the two phases. This work shows the sensitivity of the component materials to processing conditions and the importance of consistency in gas separation membrane production. In particular, milling the sieves to reduce the size and using chemical linkage agents to bond to the polymer have potential to alter the separation performance of the respective materials. Analysis of multiple factors in this work provides important information regarding the source of unexpected properties in the hybrid membranes. Hybrid membrane testing in this work shows a need for active control of particle agglomerates within the dope prior to casting for effective membrane production. Continual sonication during the preparation of the casting dope was able to prevent the excessive agglomerates present in earlier trials. Further reduction of stresses generated during the casting process was also necessary to produce membranes with enhanced selectivity. Annealing the hybrid films above the polymer Tg appears to repair the interfacial morphology and produce effective membranes. The application of this process to enhance the gas separation performance of 6FDA-6FpDA represents the first known report of successful selectivity improvement in an upper bound polymer using the hybrid membrane approach.
497

Porosity Analysis in Starch Imbued Handsheets - Challenges using impulse drying and methods for image analysis

Thabot, Arnaud Henri 15 November 2007 (has links)
In about 30 years of experiments and development, impulse drying is now considered as a well known technology and a good candidate in the constant effort to save energy in the paper industry. The drying section is indeed the most expensive section in the process of paper production. However, this potential technology has a major disadvantage, stopping its implementation in the industry. Paper, which is a porous material with a variable compressibility, experienced a sudden release of energy at the nip opening during impulse drying. Under these conditions of high intensity process (both in temperature and pressure), the fiber mat has a tendency to delaminate. This web disruption is a critical issue against impulse drying. This thesis comes up with a new approach to the problem. These last years, the technology itself has been addressed in this issue and many improvements have been reached in terms of energy release (heat transfer control, material coating ). The novel idea is then to investigate the inner structure of the paper once it has been coated with starch to a large extent (up to 10 or 20% of the relative basis weight). Starch is known for its large use in industry, but also its capability to expand under high temperature. Hence, both relative strength and bulking effects are investigated in this thesis, using numerous experiments with variable temperatures and pressures, along with ultrasonic testing and image analysis. We have the opportunity to appreciate the phenomenon of heat transfer and mass transport in the coated medium, while reaching promising results in terms of strength and bulk. These are finally investigated using scanning electron microscopy as a first step toward a pore expansion model for starch imbued handsheets.
498

Heat And Mass Transfer Problem And Some Applications

Kilic, Ilker 01 February 2012 (has links) (PDF)
Numerical solutions of mathematical modelizations of heat and mass transfer in cubical and cylindrical reactors of solar adsorption refrigeration systems are studied. For the resolution of the equations describing the coupling between heat and mass transfer, Bubnov-Galerkin method is used. An exact solution for time dependent heat transfer in cylindrical multilayered annulus is presented. Separation of variables method has been used to investigate the temperature behavior. An analytical double series relation is proposed as a solution for the temperature distribution, and Fourier coefficients in each layer are obtained by solving some set of equations related to thermal boundary conditions at inside and outside of the cylinder.
499

Numerical study for the performance of a methanol micro-channel reformer with Pd/ZnO catalyst.

Jhang, Jhen-ming 11 September 2007 (has links)
Methanol micro-channel reformer is an important device for generating hydrogen to supply micro fuel-cell needs. In the fuel reforming process, the catalyst is adopted to reduce the activation energy and speed up the reforming reaction. Hydrogen and other chemical substance are produced in the reformer catalytic reaction. The micro-channel structure provides more opportunity for molecules of methanol and steam mixture to collide with catalyst for high reforming reaction to take place. The reforming process of methanol in a micro-channel reformer with Pd/ZnO catalyst is studied numerically in this thesis. The effects of various channel length, channel height, inlet velocity, inlet temperature, and catalyst usage (ratio of wall area covered by catalyst) on the performance of reformer (methanol conversion percentage) are investigated numerically. The results show that the methanol conversion increases with increased channel length until a channel length of about 3000£gm, the conversion approaches 100%. The conversion percentage decreases with increased inlet velocity, however, the production rate of hydrogen depends on flow rate and conversion percentage. Increasing the channel height results in decreased methonal conversion due to less collision opportunity with the catalyst. The methanol conversion percentage increases with the increase of the inlet temperature. However, the production rate of the hydrogen starts to descend when the inlet temperature is higher than about 523 K owing to more methonal preburned in raising the inlet temperature. Methanol conversion increases with the catalyst usage. However, it is worth noting that the increase is only about 15% for catalyst usage from 50% to 100%. The results in this study provide design data for the fuel cell system designer.
500

Computational characterization of diffusive mass transfer in porous solid oxide fuel cell components

Nelson, George J. 21 October 2009 (has links)
Diffusive mass transport within porous SOFC components is explored using two modeling approaches that can better inform the SOFC electrode design process. These approaches include performance metrics for electrode cross-sectional design and a fractal approach for modeling mass transport within the pore structure of the electrode reaction zone. The performance metrics presented are based on existing analytical models for transport within SOFC electrodes. These metrics include a correction factor for button-cell partial pressure predictions and two forms of dimensionless reactant depletion current density. The performance impacts of multi-dimensional transport phenomena are addressed through the development of design maps that capture the trade-offs inherent in the reduction of mass transport losses within SOFC electrode cross-sections. As a complement to these bulk electrode models, a fractal model is presented for modeling diffusion within the electrochemically active region of an SOFC electrode. The porous electrode is separated into bulk and reaction zone regions, with the bulk electrode modeled in one-dimension based on the dusty-gas formalism. The reaction zone is modeled in detail with a two-dimensional finite element model using a regular Koch pore cross-section as a fractal template for the pore structure. Drawing on concepts from the analysis of porous catalysts, this model leads to a straightforward means of assessing the performance impacts of reaction zone microstructure. Together, the modeling approaches presented provide key insights into the impacts of bulk and microstructural geometry on the performance of porous SOFC components.

Page generated in 0.0703 seconds