• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Microultrasound imaging of tissue dysplasia

Sharma, Srikanta January 2015 (has links)
The second most common cause of cancer deaths in the developed world is bowel cancer. Improving the ability to detect and classify lesions as early as possible, allows treatment earlier. The work presented in this thesis is structured around the following detailed aims:Development of high frequency, broadband µUS (micro-ultrasound) imaging transducers through optimization of ultra-thinning processes for lithium niobate (LNO) and fabrication of novel ‘mass-spring’ matching layers using carefully controlled vacuum deposition is demonstrated. The effectiveness of this technique was quantified by applying multiple matching layers to 3 mm diameter 45 MHz LNO µUS transducers using carefully controlled vacuum deposition. The bandwidth of single mass-spring layer µUS transducer was measured to be 46% with an insertion loss of 21 dB. The bandwidth and insertion loss of a multiple matching layer µUS transducer was measured to be 59% and 18 dB respectively. The values were compared with an unmatched transducer which had a bandwidth and insertion loss of 28% and 34 dB respectively. All the experimentally measured values were in agreement with unidimensional acoustic model predictions. µUS tools that can detect and measure microscopic changes in precancerous tissue using a mouse small bowel model with an oncogenic mutation was developed. µUS transducer was used to test the hypothesis that the intestinal tissue morphology of WT (wild type) and ApcMin/+ (adenomatous polyposis coli) diverges with progressing age intervals (60, 90 and 120 days) of mice. A high frequency ultrasound scanning system was designed and the experiments were performed ex vivo using a focused 45 MHz, f-# = 2.85, µUS transducer. The data collected by scanning was used to compute the backscatter coefficients (BSC) and acoustic impedance (Z) of WT and ApcMin/+ mice. The 2D and 3D ultrasound images showed that µUS detects polyps < 500 µm in the scan plane. The measured values of BSC and Z showed differences between normal and precancerous tissue. The differences detected in precancerous murine intestine and human tissue using µUS were correlated with high resolution 3D optical imaging. This novel approach may provide a powerful adjunct to screening endoscopy for improved identification and monitoring, allowing earlier treatment of otherwise undetectable lesions.
2

Computation of electromagnetic fields in assemblages of biological cells using a modified finite difference time domain scheme : computational electromagnetic methods using quasi-static approximate version of FDTD, modified Berenger absorbing boundary and Floquet periodic boundary conditions to investigate the phenomena in the interaction between EM fields and biological systems

See, Chan Hwang January 2007 (has links)
There is an increasing need for accurate models describing the electrical behaviour of individual biological cells exposed to electromagnetic fields. In this area of solving linear problem, the most frequently used technique for computing the EM field is the Finite-Difference Time-Domain (FDTD) method. When modelling objects that are small compared with the wavelength, for example biological cells at radio frequencies, the standard Finite-Difference Time-Domain (FDTD) method requires extremely small time-step sizes, which may lead to excessive computation times. The problem can be overcome by implementing a quasi-static approximate version of FDTD, based on transferring the working frequency to a higher frequency and scaling back to the frequency of interest after the field has been computed. An approach to modeling and analysis of biological cells, incorporating the Hodgkin and Huxley membrane model, is presented here. Since the external medium of the biological cell is lossy material, a modified Berenger absorbing boundary condition is used to truncate the computation grid. Linear assemblages of cells are investigated and then Floquet periodic boundary conditions are imposed to imitate the effect of periodic replication of the assemblages. Thus, the analysis of a large structure of cells is made more computationally efficient than the modeling of the entire structure. The total fields of the simulated structures are shown to give reasonable and stable results at 900MHz, 1800MHz and 2450MHz. This method will facilitate deeper investigation of the phenomena in the interaction between EM fields and biological systems. Moreover, the nonlinear response of biological cell exposed to a 0.9GHz signal was discussed on observing the second harmonic at 1.8GHz. In this, an electrical circuit model has been proposed to calibrate the performance of nonlinear RF energy conversion inside a high quality factor resonant cavity with known nonlinear device. Meanwhile, the first and second harmonic responses of the cavity due to the loading of the cavity with the lossy material will also be demonstrated. The results from proposed mathematical model, give good indication of the input power required to detect the weakly effects of the second harmonic signal prior to perform the measurement. Hence, this proposed mathematical model will assist to determine how sensitivity of the second harmonic signal can be detected by placing the required specific input power.
3

Ray Tracing Algorithm for Dielectric Domes / Algoritm för strålföljning i dielektriska kupoler

Pubill, Maria January 2023 (has links)
Almost hemispherical scanning capabilities are required for modern wireless communication systems to produce broad coverage without performance degradation. Phased array antennas are commonly used as a fully-electronic beam-steering solution for its rapidity in beam switching. However, the effective aperture for high scanning angles is reduced, causing a reduction of the gain with the cosine of the elevation angle. Quasi-optical systems are used to achieve high directivity for wide scanning in combination with phased arrays. An interesting solution is the dielectric dome antenna, where rotationally symmetric dielectric lenses are used to enhance the scanning performance of an antenna with limited scanning capabilities. Using a full-wave simulator to evaluate lenses combined with arrays is very time-consuming, making the lens design inefficient and laborious. In this work is presented a Ray-Tracing tool used to simulate in a fast and efficient way the far-field of two-dimensional dielectric lenses. While a full-wave simulation of a three-dimensional lens could take approximately 3 hours, the Ray-Tracing evaluation takes less than 3 minutes, making possible the full optimization and design of these lenses. A numerical calculation of the ray path is used to evaluate the phase of the electric field at the lens aperture, while the amplitude is evaluated using ray-tube power theory. The far-field radiation pattern of the lens antenna is calculated using the Kirchhoff-Fresnel diffraction formula. In this work, it is also presented a full study of the reflection and absorption losses, which is something that was not previously done in the state of the art. Matching layers are designed and evaluated to reduce the reflection losses at each interface. To demonstrate the effectiveness of this approach, we compare the radiation patterns produced by a two-dimensional dielectric dome antenna with those computed using COMSOL, showing a significant reduction in time and computational resources. / För moderna trådlösa kommunikationssystem krävs nästan halvklotformiga skanningsmöjligheter för att åstadkomma bred täckning utan försämrad prestanda. Fasstyrda antenner används vanligen som en helt elektronisk lösning för strålstyrning på grund av dess snabbhet vid byte av strålar. Den effektiva aperturen för höga skanningsvinklar minskar dock, vilket leder till att förstärkningen minskar med cosinus av elevationsvinkeln. Kvasiooptiska system används för att uppnå hög riktningsförmåga för bred avsökning i kombination med fasade matriser. En intressant lösning är den dielektriska kupolantennen, där rotationssymmetriska dielektriska linser används för att förbättra skanningsegenskaperna hos en antenn med begränsad skanningskapacitet. Att använda en fullvågssimulator för att utvärdera linser i kombination med matriser är mycket tidskrävande, vilket gör linsdesignen ineffektiv och arbetskrävande. I detta arbete presenteras ett Ray-Tracing-verktyg som används för att på ett snabbt och effektivt sätt simulera fjärrfältet för tvådimensionella dielektriska linser. Medan en fullvågssimulering av en tredimensionell lins kan ta ungefär 3 timmar tar strålföljningssimuleringen mindre än 3 minuter, vilket gör det möjligt att optimera och konstruera dessa linser fullt ut. En numerisk beräkning av strålbanan används för att utvärdera fasen hos det elektriska fältet vid linsaperturen, medan amplituden utvärderas med hjälp av strålrörsteori. Linsantennens strålningsmönster i fjärrfältet beräknas med hjälp av Kirchhoff-Fresnel-diffraktionsformeln. I detta arbete presenteras också en fullständig studie av reflektions- och absorptionsförlusterna, vilket är något som inte tidigare har gjorts inom detta forskningsområde. Anpassningsskikt utformas och utvärderas för att minska reflektionsförlusterna vid varje gränssnitt. För att visa hur effektivt detta tillvägagångssätt är, jämför vi strålningsdiagrammen som produceras av en dielektrisk kupolantenn med dem som beräknats med COMSOL, vilket visar på en betydande minskning av beräkningsresurserna.
4

Computation of electromagnetic fields in assemblages of biological cells using a modified finite difference time domain scheme. Computational electromagnetic methods using quasi-static approximate version of FDTD, modified Berenger absorbing boundary and Floquet periodic boundary conditions to investigate the phenomena in the interaction between EM fields and biological systems.

See, Chan H. January 2007 (has links)
yes / There is an increasing need for accurate models describing the electrical behaviour of individual biological cells exposed to electromagnetic fields. In this area of solving linear problem, the most frequently used technique for computing the EM field is the Finite-Difference Time-Domain (FDTD) method. When modelling objects that are small compared with the wavelength, for example biological cells at radio frequencies, the standard Finite-Difference Time-Domain (FDTD) method requires extremely small time-step sizes, which may lead to excessive computation times. The problem can be overcome by implementing a quasi-static approximate version of FDTD, based on transferring the working frequency to a higher frequency and scaling back to the frequency of interest after the field has been computed. An approach to modeling and analysis of biological cells, incorporating the Hodgkin and Huxley membrane model, is presented here. Since the external medium of the biological cell is lossy material, a modified Berenger absorbing boundary condition is used to truncate the computation grid. Linear assemblages of cells are investigated and then Floquet periodic boundary conditions are imposed to imitate the effect of periodic replication of the assemblages. Thus, the analysis of a large structure of cells is made more computationally efficient than the modeling of the entire structure. The total fields of the simulated structures are shown to give reasonable and stable results at 900MHz, 1800MHz and 2450MHz. This method will facilitate deeper investigation of the phenomena in the interaction between EM fields and biological systems. Moreover, the nonlinear response of biological cell exposed to a 0.9GHz signal was discussed on observing the second harmonic at 1.8GHz. In this, an electrical circuit model has been proposed to calibrate the performance of nonlinear RF energy conversion inside a high quality factor resonant cavity with known nonlinear device. Meanwhile, the first and second harmonic responses of the cavity due to the loading of the cavity with the lossy material will also be demonstrated. The results from proposed mathematical model, give good indication of the input power required to detect the weakly effects of the second harmonic signal prior to perform the measurement. Hence, this proposed mathematical model will assist to determine how sensitivity of the second harmonic signal can be detected by placing the required specific input power.
5

Dynamics of Multi-functional Acoustic Holograms in Contactless Ultrasonic Energy Transfer Systems

Bakhtiari Nejad, Marjan 28 August 2020 (has links)
Contactless ultrasonic power transfer (UPT), using piezoelectric transducers, is based on transferring energy using acoustic waves, in which the waves are generated by an acoustic source or transmitter and then transferred through an acoustic medium such as water or human tissue to a sensor or receiver. The receiver then converts the mechanical strain induced by the incident acoustic waves to electricity and delivers to an electrical load, in which the electrical power output of the system can be determined. The execution and efficiency of this technology can be significantly enhanced through patterning, focusing, and localization of the transmitted acoustic energy in space to simultaneously power pre-determined distributed sensors or devices. A passive 3D-printed acoustic hologram plate alongside a single transducer can generate arbitrary and pre-designed ultrasound fields in a particular distance from the hologram mounted on the transmitter, i.e., a target plane. This dissertation presents the use of these simple, cost-effective, and high-fidelity acoustic holograms in UPT systems to selectively enhance and pattern the electrical power output from the receivers. Different holograms are numerically designed to create single and multi-focal pressure patterns in a target plane where an array of receivers are placed. The incident sound wave from a transmitter, after passing through the hologram, is manipulated, hence, the output field is the desired pressure field, which excites the receivers located at the pre-determined focal points more significantly. Furthermore, multi-functional holograms are designed to generate multiple images at different target planes and driving frequencies, called, respectively, multi-image-plane and multi-frequency patterning holograms. The multiple desired pressure distributions are encoded on the single hologram plate and each is reconstructed by changing the axial distance and by switching the frequency. Several proof-of-concept experiments are performed to verify the functionality of the computationally designed holograms, which are fabricated using modern 3D-printers, i.e., the desired wavefronts are encoded in the hologram plates' thickness profile, being input to the 3D-printer. The experiments include measurement of output pressure fields in water using needle hydrophones and acquisition of receivers' voltage output in UPT systems. Another technique investigated in this dissertation is the implementation of acoustic impedance matching layers deposited on the front leading surface of the transmitter and receiver transducers. Current UPT systems suffer from significant acoustic losses through the transmission line from a piezoelectric transmitter to an acoustic medium and then to a piezoelectric receiver. This is due to the unfavorable acoustic impedance mismatch between the transducers and the medium, which causes a narrow transducer bandwidth and a considerable reflection of the acoustic pressure waves at the boundary layers. Using matching layers enhance the acoustic power transmission into the medium and then reinforce the input as an excitation into the receiver. Experiments are performed to identify the input acoustic pressure from a cylindrical transmitter to a receiver disk operating in the 33-mode of piezoelectricity. Significant enhancements are obtained in terms of the receiver's electrical power output when implementing a two-layer matching structure. A design platform is also developed that can facilitate the construction of high-fidelity acoustically matched transducers, that is, the material layers' selection and determination of their thicknesses. Furthermore, this dissertation presents a numerical analysis for the dynamical motions of a high-intensity focused ultrasound (HIFU)-excited microbubble or stable acoustic cavitation, which includes the effects of acoustic nonlinearity, diffraction, and absorption of the medium, and entails the problem of several biomedical ultrasound applications. Finally, the design and use of acoustic holograms in microfluidic channels are addressed which opens the door of acoustic patterning in particle and cell sorting for medical ultrasound systems. / Doctor of Philosophy / This dissertation presents several techniques to enhance the wireless transfer of ultrasonic energy in which the sound wave is generated by an acoustic source or transmitter, transferred through an acoustic medium such as water or human tissue to a sensor or receiver. The receiver transducer then converts the vibrational energy into electricity and delivers to an electrical load in which the electrical power output from the system can be determined. The first enhancement technique presented in this dissertation is using a pre-designed and simple structured plate called an acoustic hologram in conjunction with a transmitter transducer to arbitrarily pattern and shape ultrasound fields at a particular distance from the hologram mounted on the transmitter. The desired wavefront such as single or multi-focal pressure fields or an arbitrary image such as a VT image pattern can simply be encoded in the thickness profile of this hologram plate by removing some of the hologram material based on the desired shape. When the sound wave from the transmitter passes this structured plate, it is locally delayed in proportion to the hologram thickness due to the different speed of sound in the hologram material compared to water. In this dissertation, various hologram types are designed numerically to implement in the ultrasonic power transfer (UPT) systems for powering receivers located at the predetermined focal points more significantly and finally, their functionality and performances are verified in several experiments. Current UPT systems suffer from significant acoustic losses through the transmission from a transmitter to an acoustic medium and then to a receiver due to the different acoustic impedance (defined as the product of density and sound speed) between the medium and transducers material, which reflects most of the incident pressure wave at the boundary layers. The second enhancement technology addressed in this dissertation is using intermediate materials, called acoustic impedance matching layers, bonded to the front side of the transmitter and receiver face to alleviate the acoustic impedance mismatch. Experiments are performed to identify the input acoustic pressure from a transmitter to a receiver. Using a two-layer matching structure, significant enhancements are observed in terms of the receiver's electrical power output. A design platform is also developed that can facilitate the construction of high-fidelity acoustically matched transducers, that is, the material layers' selection and determination of their thicknesses. Furthermore, this dissertation presents a numerical analysis for the dynamical motions of a microbubble exposed to a high-intensity focused ultrasound (HIFU) field, which entails the problem of several biomedical ultrasound applications such as microbubble-mediated ultrasound therapy or targeted drug delivery. Finally, an enhancement technique involving the design and use of acoustic holograms in microfluidic channels is addressed which opens the door of acoustic patterning in particle and cell sorting for medical ultrasound systems.

Page generated in 0.0552 seconds